Setting96.ru

Строительный журнал
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Подключение диммера к светодиодной ленте

Подключение диммера к светодиодной ленте

Диммированием (англ. to dim – затемнять) называется процесс регулирования освещенности – вручную или автоматически. Для осветительных приборов разной конструкции эта процедура осуществляется различными путями.

Регулировка яркости LED-осветителей

Параметром, определяющим интенсивность светодиодных источников света является ток. Следовательно, диммирование LED-приборов сводится к изменению тока, протекающего через светоизлучающие элементы.

Особенности диммирования LED-ламп

Светодиодные лампы построены по различным схемам. Различие сводится к способам стабилизации (или просто ограничению) тока через LED. Подход к регулировке интенсивности свечения также различается:

  1. У простых недорогих ламп ток через излучающий элемент ограничивается резистором. В этом случае диммирование легко производится изменением величины внешнего напряжения. Чем оно больше, тем больше ток через LED, тем ярче он светится. Другой способ регулировки – ШИМ. Здесь регулируется средний ток через кристалл за единицу времени.
  2. У многих ламп встроен электронный стабилизатор тока – драйвер. Его задача – удерживать ток через светодиоды неизменным, несмотря на изменения внешнего напряжения. Очевидно, что здесь диммировать, регулируя входные параметры, бессмысленно: драйвер все равно будет стараться удержать ток стабильным.
  3. Есть лампы, у которых функция диммирования возложена на драйвер. Он может изменять ток через LED в зависимости от внешней команды.

Поэтому потребителю важно знать, как управлять интенсивностью свечения такой лампы. На упаковках можно встретить маркировку «диммируемая».

Подключение диммера к светодиодной ленте

Управление яркостью светодиодных лент

Светодиодные ленты построены в виде отрезков-модулей, каждый из которых содержит один или несколько светодиодов и балластный резистор. Такие отрезки можно соединять параллельно. Никаких электронных устройств для стабилизации тока здесь нет, поэтому яркостью можно управлять, изменяя ток через LED, регулируя питающее напряжение. Поэтому недиммируемых лент не бывает. Хотя в характеристиках осветительного прибора часто пишут «диммируемая светодиодная лента», это всего лишь уловка маркетологов для привлечения потребителей.

Способы регулировки яркости светодиодной ленты

Самый простой способ управлять яркостью осветительного прибора – включить последовательно с ним переменный резистор. Он будет перераспределять падение напряжения между ним и лентой, тем самым регулируя ток через элементы. Этот способ дешев и прост, но на потенциометре бесполезно рассеивается большое количество мощности.

Другой метод – установка автотрансформатора со стороны 220 В блока питания. Этот трансформатор громоздок, дорог и ненадежен.

Неэффективные методы изменения яркости.

Самый распространенный способ регулирования интенсивности свечения – применение специальных приборов – диммеров. Они регулируют средний ток через светодиоды путем регулировки среднего напряжения методом широтно-импульсной модуляции (ШИМ).

регулирования методом ШИМ.

Особенностью такого пути является отсутствие перераспределения мощности между ключевым элементом и нагрузкой – энергия подается дозированными порциями. Яркость усредняется за счет инерционности человеческого зрения.

Управление низковольтными лентами

Импульсное напряжение для светильников 12..36 вольт, промодулированное по ширине импульса, формируется с помощью микросхем. Для диммеров с ручным управлением применяются таймеры. Например, широко распространенная микросхема 555. С ее помощью генерируется последовательность импульсов, скважность которых можно регулировать потенциометром. Импульсы управляют мощным ключом на полевом транзисторе, который регулирует средний ток через светодиодную ленту.

Схема диммера на таймере 555.

Если светорегулятор предполагает более высокий уровень сервиса, регулятор среднего тока строят на микроконтроллере или специализированной микросхеме. Так выполняют устройства с дистанционным управлением или адаптивной подсветкой, изменяющейся в зависимости от окружающего освещения.

Подключение регулятора освещения для низковольтных приборов.

Важно! При выборе любого регулятора яркости надо обращать внимание на определяющие параметры – рабочее напряжение и максимальную нагрузочную способность диммера. Они должны соответствовать характеристикам осветительного прибора, который предполагается подключить.

Рабочее напряжение для распространенных типов осветительных устройств указано в таблице.

Тип прибораRT-5000 3528RT-5000 2×3528ULTRA-5000 5630ULTRA-5000 2×5630RS-5000 335RS-5000 2×335
Напряжение питания, В1212, 24, 3612241212, 24

Регулирование яркости лент на 220 В

В основу диммирования LED-оборудования, питающегося от сети 220 В положены те же принципы, но реализация несколько другая. В качестве управляющих ключей используются более мощные и высоковольтные элементы, включая симисторы.

Схема светорегулятора на 220 В.

Подключение такого диммера к светодиодной ленте и регулирование производится до выпрямления. Схема управления «нарезает» куски синусоиды нужной ширины, формируя среднее напряжение. Потом оно выпрямляется, фильтруется (усреднение происходит в фильтре, поэтому дополнительных мер к снижению мерцания применять не надо) и подается на LED-ленту.

Подключение диммера к светодиодной ленте

Виды диммеров и варианты установки

Обычному потребителю не очень интересно, как происходит процесс регулирования яркости. Большинству пользователей нужна информация о потребительских свойствах светорегуляторов, об уровне комфорта, который они могут обеспечить и о вписывании их в интерьер. По этим свойствам диммеры бывают:

  1. Приборы с ручным управлением. Похожи на обычный сетевой выключатель освещения, только оснащены поворотной рукояткой. Устанавливаются на стену на место выключателей освещения.
  2. Диммеры с ручной регулировкой, оснащенные сенсорным управлением и ЖК-дисплеем. Имеют расширенные сервисные возможности – таймеры, предустановка сценариев и т.д. Стоят заметно дороже.
  3. Светорегуляторы с дистанционным управлением. Регулируются с пульта (подобного ПДУ телевизора и т.п.). Связь происходит по ИК-порт или по радиоканалу. Диммеры по второму варианту проще спрятать за элементами интерьера. Например, смонтировать за натяжными потолками, а потом подсоединить к ним LED-светильник.
  4. Диммирование RGB-лент происходит в процессе регулировки цветности и создания спецэффектов с помощью контроллеров.
Читать еще:  Как регулировать мебельные петли blum

В большинстве случаев светорегуляторы совмещены с выключателями питания светодиодных светильников.

В заключении видео: Современные способы диммирования светодиодных лент.

Установить и подключить диммер самостоятельно несложно. Но надо помнить, что для разных типов светотехнических приборов применяются различные способы регулировки яркости. Диммер, предназначенный для галогенных приборов, не подойдет для регулировки интенсивности свечения LED-лент.

Фоторезистор и светодиоды на Arduino

Сегодня сделаем скетч и прототип схемы на Arduino с пользованием фоторезистора. Вот фоторезистор, находится здесь, я собралась такой макет, он похож на новогоднюю светодиодную гирлянду из предыдущих статей.

новогодняя гирлянда на светодиодах

У нас 8 светодиодов, они установлены так, что слева короткая ножка это минус, справа длинная ножка это плюс. Так они все установлены, в схеме использован один резистор на 10 килоом, я его брал из набора Arduino Kit, и используется 8 подключенных к плюсовому контакту светодиода сопротивлений на 220ом, так оно подключено.

светодиоды и фоторезистор

Использовано 8 чёрных проводов это минусовые, и зелёные 8 штук – пины управления от двенадцатого до пятого. В процессе отладки крайний черный заменил на зеленый, но об этом позже.

Фоторезистор здесь, рядом с ним резистор на 10килоом, синяя перемычка идёт к минусу, оранжевый подключается одним концом в среднюю точку, между резистором и фоторезистором, другим концом в плату Arduino, в А0 (аналоговый пин).

Красный это 5 Вольт, и вот через этот делитель напряжения будет работать схема, будут загораться светодиоды, в зависимости от уровня освещенности. Я поправлю светодиоды, достаточно шаткая получилось конструкция. К модели ещё вернемся, а сейчас займемся написанием скетча.

Создадим новый проект, и приступим к написанию, объявим константы, несколько штук, пусть будет тип int, это будет количество выводов, поскольку светодиодов в схеме 8 штук. Так будет указано, сколько светодиодов использовали в схеме.

Сделаем массив с номерами пинов, задействуем 5 6 7 8 9 10 11 12 цифровые разъёмы, укажем номер пина на котором снимается уровень освещённости, объявим переменную для фоторезистора, значение сенсора и также объявим уровень освещённости, чтобы можно было делать разбивку их по пинам.

В подпрограмме setup напишем цикл, в котором чтобы не присваивать каждому значению исходящего через pinMode , пройдём в цикле по всем пинам присвоим им значения в pinmode из массива и каждому пину присвоим значение OUTPUT .

В принципе можно было этого не делать, можно было указать pinmode и дальше писать пять, потом 6, и так далее, но это очень долго и это дикий варварский метод. Поэтому в цикле за один проход пройдем все пины.

В loop получим значение сенсора, считав через analogRead из пина A0 .

Далее, сделаем разбивку значение сенсор, используя функцию map получаем значение сенсора, и исходя из уровня освещенности, при чувствительности от 300 до максимального значения 1023, будет распределяться по 8 пинам, которая объявлены выше.

Далее в цикле пройдем все пины, так добавил скобки, начиная с первого светодиода, если счетчик не больше 8 будем прибавлять, и дальше проверим по условию, что если номер светодиода меньше уровня освещения, подадим на этот светодиод и все предыдущие напряжение через константу HIGH .

Если же нет, запишем в него отсутствие напряжения, и светодиод не будет гореть.

Выравниваем код через комбинацию клавиш ctrl+T и давайте теперь посмотрим, что получится, запустим на проверку, сохраним скетч.

Так компиляция скетча, теперь его загрузим на Arduino. Вернемся к схеме, на данный момент один светодиод при изменении освещение не горит из-за плохого контакта.

плохой контакт

Сейчас исправлю, не будем его трогать, если я выключу освещение, то погаснут все светодиоды. Если же я буду подсвечивать фоторезистор фонариком, плавно добавляя освещения, то будут гореть практически все светодиоды, ну и соответственно убираю, уменьшая уровень освещённости, меняется число горящих светодиодов.

частичная освещенность фоторезистора

Если же я включу полностью освещение, горят почти все, в чём проблема с этим светодиодом. Достаточно много потратил на него времени, здесь всё правильно собрано, даже минус пробросил заведомо исправным зеленым проводом, но почему-то он капризничает и не горит.

глючит светодиод

Давайте теперь вернемся к скетчу и посмотрим что не так. Пример был взят с официального источника, на диске к Arduino есть такой же код.

В скетче получается распределение освещенности от 300 до 1023(максимального значения), попытка изменить начальный порог на — никакого результатов не даёт.

Но если распределяем на 8 частей вот это вот всё значение, то тут пригодится калькулятор, получается, либо сопротивление на 10килоом даёт погрешность какую-то, нужно 1023 разделить на 8, получаем практически 128, если брать правильно, то 1024 разделить на 8, это и есть 128.

Теперь нужно от 1023 вычесть 128, поставить сюда значение 895, тогда по логике вещей должно быть всё нормально. Загрузим и посмотрим, что изменится.

Сейчас горят все светодиоды, попробуем перекрыть освещенность, или давайте отключим…

Стартовое значение всё равно надо вернуть 300, поскольку подается на эти три первых светодиода питания. Давайте изменим в скетче 0 на 300, как было, было это сделано не просто так, перезалью скетч и посмотрим, что изменится на этот раз…

Читать еще:  Регулировка пластиковых окон века своими руками на зиму

Теперь горит первый светодиод, при минимальном освещении, если включить все, а там у меня 1800 люксов, из двух метров светодиодной ленты, горят все, как и должно.

фоторезистор ловит остаточное освещение

При выключении фоторезистор ловит остаточное освещение в помещении, горит люстра, не полная тьма, и он срабатывает. Но если подсвечивать фонариком, подавая плавно свет на фоторезистор, схема работает правильно.

тьма и фоторезистор

Если вырубить свет полностью, посмотрим, что получится в полной темноте. Как видите, при полном отсутствии света, фоторезистор реагирует правильно, светодиоды загораются постепенно, по мере увеличения освещенности. При включенном свете горят все. Такой вот получился скетч, с лайфхаком – подгонка чувствительности фоторезистора, под свои нужды.

Сенсорный диммер для светодиодов

Сегодня на обзоре сенсорный диммер (выключатель+регулятор яркости) для одноцветных светодиодных лент и ламп. Заявлено 9-24В, 3А, 30Вт. Если коротко — ШИМ работает на частоте 30кГц, то есть глазу не виден, так что для заявленных характеристик — вполне годно, правда 24В я всё же не подавал бы, но на 12-15 — будет работать.

Внешний вид. Антистатический пакетик я не фоткал.




Детали крупно. Тут у нас LDO HT7550 и транзистор AO4406. На микроконтроллере маркировка затёрта


У стабилизатора максимальное входное напряжение 24В, так что 12-15, ну до 20 вольт еще можно подавать на вход, больше — я б настоятельно не рекомендовал. У транзистора заявлено до 30В, до 13А тока, сопротивление канала при 4.5В на затворе — до 15.5мОм. Тут я не очень хорошо понимаю почему производитель заявляет всего 3А тока, возможно из-за толщины/ширины дорожек, а может быть из-за специфической работы транзистора.

Приятной особенностью модуля является светодиод внутри сенсора, который показывает куда касаться пальцем.

Попробуем поместить в профиль. Ленты под рукой не оказалось, оказалась только полоса, ну и кусочек вот такого профиля:


Сенсор идеально упирается в экран:

В сборе:

Потребляемый ток в выключенном режиме порядка 4-5мА.

Устройство имеет 4 режима, которые задаются перемычками по краям от сенсора.
1. просто вкл-выкл
2. (по умолчанию) при удержании пальца на сенсоре плавно изменяется яркость, каждый раз в другую сторону, то есть чтобы перестать уменьшать яркость и начать увеличивать — нужно убрать палец и слова коснуться. При достижении минимума или максимума изменение прекращается.
3. аналогично режиму 2, но при достижении минимума/максимума яркость начинает изменяться в противоположную сторону
4. фиксированные 30% 60% 100% яркости.

Как по мне — режим по умолчанию оптимален. Кстати, при «холодном старте», то есть подаче питания, включается регулятор на 60%. Памяти яркости и режима (вкл/выкл) при отключении питания нет — при подаче питания нагрузка выключена, при коротком касании включается режим «по умолчанию» — 60%. При выключении сенсором и последующем включении яркость устанавливается на том значении которое было выставлено перед выключением.

Как это работает. Внимание, грязные руки! работа у меня довольно грязная, вымазываешься очень быстро и незаметно, вроде руки помыл, куда-то к машине вышел — и привет. снял видео, и когда обнаружил что вымазался — ну поздняк уже, чо.

Камера не совсем корректно передает эффект погасания и зажигания, в реальной жизни оно смотрится плавнее и равномернее.

Подключим осциллограф. Вот что мы видим на светодиодах:

Это минимальная яркость, два каких-то промежуточных значения, максимальная яркость и режим «по умолчанию», после отключения питания. обратите внимание, что 0 на осциллографе — внизу экрана, то есть транзистор недозакрывается, на светодиодах минимум 6-7В, ну и ШИМ добавляет импульсами до напряжения питания. С точки зрения мерцаний это хорошо, с точки зрения нагрева транзистора — не особо. Возможно поэтому заявлено всего 3А. При этом я подключил полуметровую 7Вт полосу и еще этот вот огрызок, и на 60% яркости через полчаса транзистор был чуть тёплый.

Что происходит на затворе транзистора:

Это минимум и два промежуточных положения. На максимуме там постоянное напряжение.

Подытоживая: а мне понравилось. Я мерцания не вижу, хотя несомненно найдутся уникумы, для которых 30кГц это жуткое мерцание. Я же ни «карандашным тестом», ни глазом, ни фотоаппаратом вот мерцания не вижу. Чувствительность адекватная, срабатывает только если прикоснуться (даже через пластик — тоже только к сенсору, не рядом), что защищает от ложных срабатываний. Желающие могут изменить логику работы на тот из 4 вариантов который удобнее всего в данном применении. В принципе — возможна установка транзистора помощнее для более мощных светильников.

Несомненно, возможны более дешевые места покупки аналогичных регуляторов, ссылки на которые неминуемо будут в комментах. но прошу учитывать, что совершенно одинаковые с виду модули могут ШИМить на разных частотах, обозреваемый 32кГц и неощутим, а у другого такого же на вид будет 300Гц и это-то карандашный тест покажет, да и глазом может быть иногда заметен стробоэффект.

Читать еще:  Блоки питания 12 вольт регулировка силы тока

Управление яркостью внешнего светодиода с помощью резисторов

На этом примере Вы научитесь изменять яркость светодиода, используя резисторы с различным сопротивлением.

Для данного примера вам понадобятся

1 светодиод диаметром 5 мм

Светодиод красній

1 резистор на 270 Ом (красный, фиолетовый, коричневый)

Резистор 220

1 резистор на 470 Ом (желтый, фиолетовый, коричневый)

Резистор 470

1 резистор на 2.2 кОм (красный, красный, красный)

Резистор 2.2

1 резистор на 10 кОм (коричневый, черный, оранжевый)

Резистор 10

Макетная плата

Arduino Uno

Проводники

Светодиоды — общие сведения

Светодиоды отлично служат в устройствах для разного рода индикации. Они потребляют мало электричества и при этом долговечны.

В данном примере мы используем самые распространенные светодиды диаметром 5 мм. Также распространены светодиоды диаметром 3 миллиметра, ну и большие светодиоды диаметром 10 мм.

Подключать светодиод напрямую к батарейке или источнику напряжения не рекомендуется. Во-первых, надо сначала разобраться, где именно у светодиода отрицательная и положительная ноги. Ну а во вторых, необходимо использовать токоограничивающие резисторы, иначе светодиод очень быстро перегорит.

Если вы не будете использовать резистор со светодиодом, последний очень быстро выйдет из строя, так как через него будет проходить слишком большое количество тока. В результате светодиод нагреется и контакт, генерирующий свет, разрушится.

Различить позитивную и негативную ноги светодиода можно двумя способами.

Светодиод катод анод

Первый – позитивная нога длиннее.

Второй – при входе в корпус самого диода на коннекторе негативной ноги есть плоская кромка.

Если вам попался светодиод, на котором плоская кромка на более длинной ноге, длинная нога все равно является позитивной.

Резисторы — общие сведения

Resist – сопротивление (англ.)

Из названия можно догадаться, что резисторы сопротивляются потоку электричества. Чем больше номинал (Ом) резистора, тем больше сопротивление и тем меньше тока пройдет по цепи, в которой он установлен. Мы будем использовать это свойство резисторов для регулирования тока, который проходит через светодиод и, таким образом, его яркость.

Резистор отдельный

Но сначала погорим немного о резисторах.

Единицы, в которых измеряется сопротивление – Ом, которые во многих источниках обозначаются греческой буквой Ω – Омега Так как Ом – маленькое значение сопротивления (практически незаметное в цепи), мы часто будем оперировать такими единицами как кОм — килоом (1000 Ом) и МОм мегаом (1000000 Ом).

В данном примере мы будем использовать резисторы с четырьмя различными номиналами: 270 Ω, 470 Ω, 2.2 кΩ и 10 кΩ. Размеры этих резисторов одинаковы. Цвет тоже. Единственное, что их различает – цветные полоски. Именно по этим полоскам визуально определяется номинал резисторов.

Для резисторов, у которых три цветные полоски и последняя золотистая, работают следующие соответствия:

Первые две полоски обозначают первые 2 числовых значения, так что красный, филетовый означает 2, 7. Следующая полоска – количество нулей, которые необходимо поставить после первых двух цифр. То есть, если третья полоска коричневая, как на фото выше, будет один нуль и номинал резистора равен 270 Ω.

Резистор с полосками коричневого, черного, оранжевого цветов: 10 и три нуля, так что 10000 Ω. То есть, 10 кΩ.

В отличии от светодиодов, у резисторов нет положительной и и отрицательной ног. Какой именно ногой подключать их к питанию/земле – неважно.

Схема подключения

Подключите в соответствии со схемой, приведенной ниже:

Arduino резисторы

На Arduino есть пин на 5 В для питания периферийных устройств. Мы будем его использовать для питания светодиода и резистора. Больше вам от платы ничего не потребуется, только лишь подключить ее через USB к компьютеру.

Arduino resistors

С резистором на 270 Ω, светодиод должен гореть достаточно ярко. Если вы вместо резистора на 270 Ω установите резистор номиналом 470 Ω, светодиод будет гореть не так ярко. С резистором на 2.2 кΩ, светодиод должен еще немного затухнуть. В конце-концов, с резистором 10 кΩ, светодиод будет еле виден. Вполне вероятно, чтобы увидеть разницу на последнем этапе вам придется вытянуть красный переходник, использовав его в качестве переключателя. Тогда вы сможете увидеть разницу в яркости.

Кстати, можно провести этот опыт и при выключенном свете.

Разные варианты установки резистора

В момент, когда к одной ноге резистора подключено 5 В, вторая нога резистора подключается к позитивной ноге светодиода, а вторая нога светодиода подключена к земле. Если мы переместим резистор так, что он будет располагаться за светодиодом, как показано ниже, светодиод все равно будет гореть.

Перемещение резистора

Мигание светодиодом

Мы можем подключить светодиод к выходу Arduino. Переместите красный провод от пина питания 5V к D13, как это показано ниже.

Светодиод к пину

Теперь загрузите пример “Blink”, который мы рассматривали здесь. Обратите внимание, что оба светодиода – встроенный и установленный вами внешний начали мигать.

Давайте попробуем использовать другой пин на Arduino. Скажем, D7. Переместите коннектор с пина D13 на пин D7 и измените следующую строку вашего кода:

Загрузите измененный скетч на Arduino. Светодиод продолжит мигать, но на этот раз, используя питание от пина D7.

голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector