Светодиодный фонарь с регулировкой яркости своими руками

Доработка схем светодиодных ламп

Доработка схем светодиодных ламп

Основные характеристики светодиодов подразделяются на электрические и световые. С одной стороны, электрические – это рабочий ток, напряжение, мощность. С другой стороны, световые характеристики светодиодов – световой поток, сила света (эффективность). А также цветовая температура, габариты и угол рассеивания.

Рабочий ток светодиодов

Светодиоды работают только от определенной силы тока. Эта характеристика наиболее важна для работоспособности светодиода. Даже небольшое превышение рабочей силы тока приведет к быстрой деградации светодиода. А в результате выходу его из строя. Чуть более высокое превышение силы тока ведет к мгновенному перегоранию светодиода.

Ток светодиодов, несомненно, зависит от их мощности. Более мощные светодиоды работают на более высоком токе. В светодиодных лампах и светильниках устанавливаются драйвера. Они ограничивают ток именно до тех параметров, которые нужны для светодиодов, установленных в этих приборах. Часто требуется подключить светодиод отдельно. В этом случае необходимо знать его характеристики. Для того чтобы ограничить ток соответствующим драйвером, токоограничивающим резистором или конденсатором.

Напряжение светодиодов

Рабочее напряжение светодиодов зависит от полупроводников и других химических элементов, использованных при изготовлении этих светодиодов. Применение разных типов материалов для изготовления существующих видов светодиодов ведет к излучению света различных цветов. То есть рабочее напряжение можно определить по цвету светодиода. Иначе говоря, светодиоды разных цветов имеют разное рабочее напряжение.

Для питания светодиодных лент и светильников обычно используются драйвера или блоки питания. Как правило у них на выходе 12 вольт постоянного тока. К примеру. От такого источника можно запитать цепочку из последовательно соединенных светодиодов с рабочим напряжением 3 вольта. Исключим в этом примере падение напряжения на токоограничивающем резисторе. Безусловно, такая последовательная цепь может состоять только из четырех светодиодов. Пятый светодиод, если включить его в эту цепь, работать не будет. Каждый из светодиодов, грубо говоря, забирает из 12 вольт питания по 3 вольта.

Эту характеристику светодиода называют напряжением падения. В данном случае у каждого из светодиодов напряжение падения составляет 3 вольта. Другими словами. Падение напряжения – это напряжение, возникающее на выводах светодиода при протекании через него прямого рабочего тока. Эту характеристику иногда и называют рабочим напряжением светодиода. Хотя, строго говоря, таких характеристик, как напряжения питания или рабочее напряжение, у светодиода нет. Как впрочем и у любого диода.

Мощность светодиодов

Мощность светодиода зависит от его рабочего тока и падения напряжения на нем. Падение напряжения разных светодиодов колеблется в диапазоне, примерно, 1,5 – 4 вольта. Рабочий ток индикаторных и маломощных светодиодов обычно составляет 15 – 20 мА. Ток мощных осветительных светодиодов может быть 150, 350, 750 мА и доходить до 1А.

Часто для повышения яркости светодиода используют повышение его рабочего тока до очень больших величин. При этом необходимо помнить. Применение для светодиодов такого большого тока ведет к их чрезмерному нагреву. А также быстрой деградации и выходу из строя. Хотя этого можно избежать. При условии, что питании светодиодов большим током, для повышения их яркости, использоваться система охлаждения. Для этого применяются достаточно массивные радиаторы из алюминия или даже меди. Более того, в некоторых случаях применяется принудительный обдув воздухом с помощью вентилятора-кулера. Хорошее охлаждение светодиодов при их работе на большом токе снижает риск потери их работоспособности. Однако, но не исключает его совсем.

Можно ли использовать светодиодные лампы с диммером Как уменьшить яркость светодиодной лампы | что говорят насекомые От чего зависит яркость свечения светодиода и как ее регулировать Как уменьшить яркость светодиодной лампы | что говорят насекомые Что такое диммер для светодиодных ламп. все о диммировании led Что такое диммер для светодиодных ламп. все о диммировании led Регулировка яркости led. все о диммерах для светодиодных ламп От чего зависит яркость свечения светодиода: основные параметры, в чем измеряется и как увеличить

Чтобы определить мощность (P) светодиода необходимо умножить напряжении (U) на силу тока (I). К примеру, мы возмем максимальные для светодиодов 4 вольта и 1 ампер. В результате мы получим самый мощный светодиод мощностью 4 Ватта. Безусловно, это будет осветительный светодиод. Несомненно, работающий от тока с не характерной, искусственно завышенной для светодиодов, силой.

Поэтому нужно понимать. Если разговор идет о 10 ваттном или даже 100 ваттном светодиоде. Несомненно, имеется в виду лампа или светильник. Они состоят из нескольких штук или десятков штук светодиодов. Или же речь идет о светодиодной сборке, например, COB типа. Иными словами, 100 кристаллов-светодиодов, каждый мощностью 1 Ватт, припаиваются на единую плату. И все это заливается слоем люминофора. Так и получается светодиод мощностью 100 Ватт.

Изменение яркости светодиодов или Контроллер своими руками

Сегодня мы постараемся сделать контроллер, который будет регулировать яркость светодиода. Материалы для данного теста были взяты с сайта led22.ru из статьи «Светодиоды для авто своими руками».

Сегодня мы постараемся сделать контроллер, который будет регулировать яркость светодиода. Материалы для данного теста были взяты с сайта led22.ru из статьи «Светодиоды для авто своими руками». 2 основные детали, используемые в даннном эксперименте — стабилизатор тока LM317 и переменный резистор. Их можно увидеть на фотографии ниже. Отличие нашего эксперимента от приведенного в оригинальной статье — мы так и оcтавили переменный резистор для регулироваки света светодиода. В магазине радиодеталей (не самом дешевом, но всем очень известном) мы приобрели данные детали за 120 рублей (стабилизатор — 30р, резистор — 90р). Здесь хочется отметить, что резистор российского производства «тембр», обладающий максимальным сопротивлением в 1кОм.

Читать еще:  Домкраты для дома регулировка

Схема подключения: на правую ножку стабилизатора тока LM317 подается «плюс» от блока питания 12V. К левой и средней ножкам поключается резистор переменного тока. Так же, к левой ножке подключается плюсовая ножка светодиода. Минусовой провод от блока питания подключается к минусовой ножке светодиода.

Получается, что ток, проходя через Lm317, уменьшается до величины, заданной сопротивлением переменного резистора.

На практике решено было припаять стабилизатор прямо на резистор. Сделано это в первую очередь для отведения тепла от стабилизатора. Теперь он будет нагреваться вместе с резистором. На резисторе у нас расположено 3 контакта. Мы используем центральный и крайний

Можно ли использовать светодиодные лампы с диммером Можно ли включать светодиодные лампы через диммер Можно ли включать светодиодные лампы через диммер От чего зависит яркость свечения светодиода: основные параметры, в чем измеряется и как увеличить Что такое диммер для светодиодных ламп. все о диммировании led Как уменьшить яркость светодиодной лампы | что говорят насекомые Можно ли использовать светодиодные лампы с диммером От чего зависит яркость свечения светодиода и как ее регулировать Регулировка яркости led. все о диммерах для светодиодных ламп

Какой имеено крайний использовать — для нас не важно. В зависимости от выбора, в одном случае при повороте ручки по часовой стрелке яркость будет увеличиваться, в противоположном случае — уменьшаться

Если подключить крайние контакты, сопротивление будет постоянно 1 кОм.

Припаиваем провода, как на схеме. К коричневому проводу будет подходить «плюс» от блока питания, синий — «плюс» к светодиоду. При пайке специально оставляем побольше олова, чтобы была лучше теплопередача.

И напоследок одеваем термоусадку, чтобы исключить возможность короткого замыкания. Теперь можно пробовать.

Для первого теста мы используем светодиоды:

1) Epistar 1W, рабочее напряжение — 4V (в нижней части следующей фотографии).

2) Плоский диод с тремя чипами, рабочее напряжение — 9V (в верхней части следующей фотографии).

Результаты (можно увидеть в следующем ролике) не могут не радовать: ни один диод не сгорел, яркость регулируется плавно от минимума до максимума. Для питания полупроводника основное значение имеет ток питания, а не напряжение (ток растет экспоненциально относительно напряжения, при повышении напряжения резко повышается вероятность «сжечь» светодиод.

От чего зависит яркость свечения светодиода и как ее регулировать От чего зависит яркость свечения светодиода: основные параметры, в чем измеряется и как увеличить Как уменьшить яркость светодиодной лампы | что говорят насекомые Можно ли включать светодиодные лампы через диммер От чего зависит яркость свечения светодиода: основные параметры, в чем измеряется и как увеличить Что такое диммер для светодиодных ламп. все о диммировании led Как уменьшить яркость светодиодной лампы | что говорят насекомые Можно ли использовать светодиодные лампы с диммером

После чего проводится тест со светодиодными модулями на 12V. И на них наш контроллер отрабатывает без проблем. Именно этого мы и добивались.

Параметры, влияющие на яркость

Насколько ярко будет отображаться освещаемый объект, зависит не только от светового потока. Яркость свечения зависит так же от плотности луча и чувствительности наблюдателя.

Сила тока

Во время работы сила тока на светодиоде
зависит от напряжения. При незначительном увеличении вольтажа электроток
повышается многократно, вместе с ним и яркость свечения. Но этим параметром
можно управлять, если включить в схему аналоговый или широко-импульсный
модулятор, обеспечивающий функцию диммирования.

Зависимость яркости свечения идеального светодиода от электротока линейная. На практике зависит от потерь на выделении тепла и дифференциального сопротивления кристалла. Существует предел, после которого повышать ток нельзя из-за перегрева p-n-перехода, способного вывести LED из строя.

Технология

Светодиод – это источник света точечного типа, направленность луча определяет конструкция. Параметры меняются в зависимости от оптических свойств и наличия в приборе люминофора, рассеивателей и линз. Независимо от устройства интенсивность свечения регулируется минимальными изменениями тока.

У светодиода при высокой плотности луча
(небольшом угле излучения) яркость свеяения увеличивается независимо от объема
потока.

Площадь кристалла

Еще один показатель, от которого
напрямую зависит объем светового потока и яркость свечения – величина
кристалла. Например, площадь СМД 3528 3,5х2,8 мм, площадь СМД 5630 – 5,6х3 мм,
световой поток соответственно 6-8 и 50 люмен. Самые новые кристаллы отличаются
большими размерами и высокими показателями интенсивности свечения. Это
объясняется тем, что излучение в любом чипе зависит от величины р-n перехода.

Схемы регуляторов яркости электрического карманного фонаря

Схема такого регулятора приведена на рис. 80,а. На элементах DD1.1, DD1.2 собран генератор прямоугольных импульсов с частотой следования 100. 200 Гц. Резистором R1 регулируют скважность импульсов примерно от 1,05 до 20. Импульсы генератора поступают на согласующий каскад, собранный на элементах DD1.3, DD1.4, а с его выхода — на электронный ключ VT1, в коллекторной цепи которого включена лампа накаливания ELI.

Включение электронного регулятора осуществляется выключателем SA1, совмещенным с резистором R1. Выключателем SA2 самого фонаря можно подавать напряжение батареи GB1 непосредственно на лампу накаливания, минуя регулятор.

Монтажную плату регулятора (рис. 81) закрепляют на боковой стенке фонаря рядом с отражателем. Под ручку переменного резистора в задней стенке фонаря пропилено прямоугольное отверстие. Конденсатор G2 размещают в любом свободном месте, желательно ближе к печатной плате.

Схемы регуляторов яркости электрического карманного фонаря

Рис. 80. Схема регулятора яркости фонаря (а) и вариант его выходного каскада (б)

Регулятор рассчитан на совместную работу с лампой накаливания, потребляющей ток не более 160 мА. Для лампы, потребляющей ток до 400 мА, электронный ключ регулятора дополняют вторым транзистором, как показано на рис. 80,6.

Схема другого варианта регулятора яркости карманного фонаря () приведена на рис. 82. В нем функцию регулирующего элемента выполняет двухконтактный сенсорный элемент, который размещают на корпусе фонаря. На элементах DD1.1, DD1.2 собран генератор, вырабатывающий прямоугольные колебания со скважностью примерно 1,05, это означает, что почти постоянно на выходе элемента DD1.2 будет напряжение высокого уровня, и только в очень короткие промежутки времени напряжение низкого уровня. Эти импульсы через конденсатор С2 поступают на сенсорный элемент El, Е2, вход элемента DD1.3. Если сопротивление между контактами сенсорного элемента велико, то на входе элемента DD1.3 будут импульсы, аналогичные выходным генератора.

Схемы регуляторов яркости электрического карманного фонаря

Рис. 81. Печатная плата (а) и размещение элементов регулятора яркости фонаря (б)

Схемы регуляторов яркости электрического карманного фонаря

Рис. 82. Схема сенсорного регулятора яркости фонаря

Схемы регуляторов яркости электрического карманного фонаря

Рис. 83. Монтажная плата (б) и конструкция сенсорного элемента

Поэтому большую часть времени на выходе элемента DD1.3 будет напряжение низкого уровня, т. е. транзисторы большую часть времени закрыты и лампа накаливания ELI не светится. Если теперь прикоснуться к сенсорному элементу, то сопротивление между его контактами уменьшится и конденсатор С 2 начнет заряжаться через это сопротивление. Чем меньше это сопротивление, тем быстрее осуществляется заряд и тем больший интервал времени на входе элемента DDil.3 будет напряжение низкого уровня, а на его выходе, наоборот, высокого, т. е. тем дольше будут открыты транзисторы VT1, VT2, а значит, больше яркость лампы накаливания. Прижимая пальцем контакты сенсорного элемента, можно изменять сопротивления между ними, т. е. регулировать яркость свечения лампы фонаря.

Читать еще:  Блок питания на lm317 и транзисторе с регулировкой напряжения

Литература: И. А. Нечаев, Массовая Радио Библиотека (МРБ), Выпуск 1172, 1992 год.

20 идей для создания светильников своими руками

В этой статье мы вас вдохновим различными идеями для создания светильников своими руками. И главное, предложим источники света, которые легко и удобно оформить в самые необычные дизайнерские решения. Вам не нужно будет думать, где найти светодиоды, платформу для наклеивания их, паять провода и делать другие технические вещи. Мы уже подумали за вас и освобождаем вам время для фантазий и светлых идей оформления светильника!

Своими руками из дерева, металла, ткани, бумаги, пластика или ниток реализуют невероятные замыслы. Пример создания светильника из пластмассовых стаканчиков:

светильник своими руками из бумажных стаканчиков

Светильник напольный своими руками из бумажных стаканчиков и гирлянды.

Настольный светодиодный светильник своими руками из картона

Настольный светодиодный светильник своими руками из картона. Внутри спрятана led лампочка.

Потолочный светильник под старину своими руками

Потолочный светильник своими руками под старину.

Светильник для потолка своими руками из дерева и металлических терок

Светильник для потолка своими руками из дерева и металлических терок.

Настенный светильник своими руками из бумаги оригами

Настенный светодиодный светильник своими руками из бумаги (оригами).

Настенный светильник из фанеры своими руками

Настенный LED светильник из фанеры.

Применение декоративных самодельных светильников

Самодельные светильники отлично выполняют роль декоративного освещения. Их редко используют для основного освещения. Для изготовления используются материалы плохо пропускающие свет, а источники света ограничены размером или мощностью. Чтобы избежать повреждения конструкции, в качестве источника света рекомендуется использовать слабо нагревающиеся светодиодные лампы или ленты, которые, в отличии от ламп накаливания, угрозы возгорания не несут.

Самодельные светильники в качестве основного освещения

В качестве основного освещения самодельные светильники все чаще используются благодаря технологичным, мощным и безопасным источникам света.

светодиодный самодельный светильник на основе светодиодной панели армстронг 595х595

Самодельный светильник на основе светодиодного светильника Армстронг 595х595.

самодельный-светодиодный-светильник

Светодиодный светильник для основного освещения.

светильник потолочный своими руками из бумаги

Лампа потолочная своими руками из бумаги. светодиодные матрицы OPPLE безопасны как источник света в данной конструкции, так как не нагревается.

Как сделать своими руками светодиодный светильник?

Например, тонкие (5 мм) светодиодные светильники 600х600 (система армстронг) можно взять в качестве основы.

Светодиодная панель армстронг Slim Panel EcoMax II OPPLE

светодиодный самодельный светильник на основе светодиодной панели армстронг 600х600

Светодиодный самодельный светильник на основе светодиодной панели Армстронг 600х600.

Мощной альтернативой стали светодиодные модули для изготовления светильников своими руками из подручных средств. Множество размеров и форм позволяет создавать напольные, настенные, потолочные или подвесные светильники необычного дизайна и высокой мощности. Используется для ремонта старого светильника или для разработки своей собственной уникальной световой конструкции.

Светодиодные модули OPPLE led module

Светодиодные модули OPPLE Led Module для ремонта и замены старой лампы или создания своими руками нового светильника.

светодиодный модуль матрица с пультом дистанционного управления и изменяемое температурой света

Модуль из светодиодов с регулировкой температуры света и пультом дистанционного управления.

Драйвер и вся необходимая электроника уже встроены в светодиодные матрицы OPPLE. В отличие от светодиодных лент, матрица (модуль) подключаются напрямую к сети 220 вольт. Светодиодный модуль OPPLE компактен в размерах, имеет продуманное охлаждение, а каждый светодиод на нём оснащен собственной линзой для наиболее равномерного распределения света.

Светораспределение в светодиодном модуле OPPLE

Линза на каждом светодиоде для наиболее равномерного распределения света.

Маленький модуль на 12 Вт (аналог 95 Вт) подходит для декоративных самодельных светильников:

декоративный светодиодный светильник из дерева под старину

Декоративный светодиодный светильник из дерева под старину.

светильник потолочный своими руками из бумаги оригами кусудама

Светильник подвесной своими руками из бумаги (оригами кусудама).

Для самых ярких решений разработан модуль на 80 Вт (аналог 600 Вт) с пультом дистанционного управления, регулировкой яркости (встроенный диммер) и изменяемой температурой света от теплого света (3000 К) до холодного (6000 К).

Светодиодный светильник своими руками с пультом Ceiling Module LED OPPLE 64W

светодиодный светильник с своими руками с регулировкой яркости и пультом дистанционного управления

Как сделать из подручных материалов яркий светодиодный светильник с пультом управления, регулировкой яркости и температуры света от теплого до холодного.

Оригинальные светильники стало возможно сделать технологичными и еще более необычными благодаря различным световым настройкам. Теперь можно играть температурой света (от желтого до белого) и регулировать яркость света.

Важно, что у светодиодных модулей OPPLE продуманная система охлаждения и они почти не нагреваются. Это даёт возможность создавать дизайнерские решения из любимых материалов: светильники из дерева, подвесные светильники из бумаги, настенные светильники из фанеры, напольные из подручных материалов. Теперь как никогда просто создавать своими руками самодельные LED светильники.

светодиодный модуль opple замена кольцевой люминесцентной лампы 18 ватт вид сбоку

настольный светильник из дерева своими руками

Настольная лампа (ночник) из дерева (фанеры) своими руками.

самодельный светодиодный светильник из бумаги

Самодельный светодиодный (ЛЕД) светильник из бумаги.

Потолочный подвесной светильник в стиле лофт своими руками из дерева

Потолочный подвесной светильник в стиле лофт сделанный своими руками.

накладной светильник самодельный из ткани

Накладная лампа самодельная из ткани.

Идея самодельного светильника из перьев

Идея самодельного LED светильника из перьев.

как сделать кованый светильник своими руками

Как сделать кованый светильник своими руками.

Выберите свой светодиодный модуль для самодельного светильника

Когда готов самодельный светильник, матрицы OPPLE из светодиодов прекрасно дополнят результат творчества высокотехнологичным акцентом. Маломощные светодиодные модули для декоративных светильников или яркие с пультом дистанционного управления подойдут для больших светильников из группы основного освещения. Используйте их для создания оригинальных как потолочных, так и настенных или настольных ламп и светильников. Один пульт может управлять сразу несколькими матрицами OPPLE. Светодиодные матрицы подключаются напрямую в сеть 220 В и дополнительных доработок не требуют.

Светодиодный фонарь с регулировкой яркости своими руками

У многих имеются различные китайские фонарики, работающие от одной батарейки. Типа такого:

К сожалению, они весьма недолговечны. О том, как вернуть фонарик к жизни и о некоторых простых доработках, способных улучшить подобные фонари — я расскажу далее.

Читать еще:  Гур на мтз 80 ремонт и регулировка золотниковой камеры

Самое слабое место у подобных фонарей — кнопка. У неё окисляются контакты, в результате чего фонарик начинает светить тускло, а затем, может вообще перестать включаться.
Первый признак — фонарь с нормальной батареей светит слабо, но если несколько раз пощёлкать кнопкой, яркость увеличивается.
Самый простой способ заставить такой фонарь светить — поступить следующим образом:

1. Берём тонкий многожильный провод, отрезаем одну жилку.
2. Накручиваем проводок на пружину.
3. Изгибаем провод, чтобы батарейка не порвала его. Провод должен слегка выступать
над закручивающейся частью фонарика.
4. Плотно закручиваем. Излишек провода обламываем (отрываем).
В результате, провод обеспечивает хороший контакт с минусовой частью батарейки и фонарик
засияет с должной яркостью. Разумеется, кнопка при таком ремонте остаётся не удел, поэтому
включение — выключение фонарика производится поворотом головной части.
Мой китаец так проработал пару месяцев. Если нужно поменять батарейку, заднюю часть фонаря
трогать не следует. Отворачиваем голову.

ВОССТАНАВЛИВАЕМ РАБОТОСПОСОБНОСТЬ КНОПКИ.

Сегодня я решил вернуть кнопку к жизни. Кнопка находится в пластиковом корпусе, который
просто впрессован в заднюю часть фонаря. В принципе, её можно вытолкнуть обратно, но я поступил немного иначе:

1. Делаем свёрлышком 2 мм пару отверстий на глубину 2-3 мм.
2. Теперь можно пинцетом выкрутить корпус с кнопкой.
3. Извлекаем кнопку.
4. Кнопка собрана без клея и защелок, поэтому её легко разобрать канцелярским ножиком.
На фото видно, что подвижный контакт окислился (круглая фигня в центре, похожая на кнопку).
Его можно почистить ластиком или мелкой шкуркой и собирать кнопку обратно, но я решил дополнительно облудить и эту часть, и неподвижные контакты.

1. Зачищаем мелкой шкуркой.
2. Облуживаем тонким слоем места отмеченные красным цветом. Протираем спиртом от флюса,
собираем кнопку.
3. Для увеличения надёжности, я припаял пружину к нижнему контакту кнопки.
4. Собираем всё обратно.
После ремонта, кнопка работает отлично. Конечно, олово тоже окисляется, но поскольку олово — довольно мягкий металл, я надеюсь, что окисная плёнка при работе кнопки будет
легко разрушаться. Недаром же на лампочках центральный контакт делают из олова.

Что такое «хотспот», мой китаец представлял весьма смутно, поэтому я решил его просветить.
Откручиваем головную часть.

1. В плате есть небольшое отверстие (стрелка). С помощью шила выкручиваем начинку,
при этом слегка давим пальцем на стекло снаружи. Так выкручивается легче.
2. Снимаем отражатель.
3. Берём обыкновенную офисную бумагу, пробиваем офисным дыроколом 6-8 отверстий.
Диаметр отверстий дырокола замечательно совпадает с диаметром светодиода.
Вырезаем 6-8 бумажных шайбочек.
4. Кладём шайбы на светодиод и прижимаем отражателем.
Тут придётся поэкспериментировать с количеством шайб. Я таким способом улучшал фокусировку у пары фонариков, количество шайб было в диапазоне 4-6. На текущем пациенте их потребовалось 6.
Что получилось в итоге:

Слева — наш китаец, справа — Fenix LD 10 (на минимуме).
Результат вполне приятный. Хотспот стал ярко выраженным и равномерным.

УВЕЛИЧИВАЕМ ЯРКОСТЬ (для тех, кто немного разбирается в электронике).

Китайцы экономят на всём. Пара лишних деталек — увеличение себестоимости, поэтому не ставят.

Основная часть схемы (отмеченная зелёным) может быть различной. На одном-двух транзисторах или на специализированной микросхемке (у меня схема из двух деталей:
дроссель и микросхема с 3-мя ногами, похожая на транзистор). А вот на части отмеченной красным — экономят. Я добавил конденсатор и пару диодов 1n4148 параллельно (шотки у меня не нашлось). Яркость светодиода увеличилась процентов на 10-15.


1. Так выглядит светодиод в подобных китайцах. Сбоку видно, что внутри толстая и тонкая ножки. Тонкая ножка — это плюс. Ориентироваться нужно по этому признаку, потому что цвета проводов могут быть совершенно непредсказуемыми.
2. Так выглядит плата, к которой припаян светодиод (с обратной стороны). Зелёным цветом обозначена фольга. Провода, идущие от драйвера, припаивают к ножкам светодиода.
3. Острым ножом или треугольным надфилем разрезаем фольгу на плюсовой стороне светодиода.
Всю плату зашкуриваем, для снятия лака.
4. Припаиваем диоды и конденсатор. Диоды я взял из сломанного компьютерного блока питания, танталовый конденсатор выпаял из какого-то сгоревшего винчестера.
Плюсовой провод теперь нужно припаивать к площадке с диодами.

В результате, фонарик выдаёт (на глаз) 10-12 люмен (см. фото с хотспотами),
если судить по фениксу, который в минимальном режиме выдаёт 9 люмен.

И последнее: преимущество китайца над фирменным фонариком (да-да, не смейтесь)
Фирменные фонари рассчитаны на то, что в них могут использоваться аккумуляторы, поэтому
с батарейкой разряженной до 1 вольта, мой Fenix LD 10, попросту не включается. Совсем.
Я взял севшую щелочную батарейку, которая отработала свой срок в компьютерной мышке. Мультиметр показал, что она села до 1.12в. Мышка на ней уже не работала, Fenix, как я и сказал, не запустился. А вот китаец — работает!

Слева — китаец, справа — Fenix LD 10 на минимуме (9 люмен). К сожалению, баланс белого сбит.
У феникса температура 4200К. Китаец синит, но не так фигово, как на фото.
Ради интереса я попробовал добить батарейку. На этом уровне яркости (на глаз 5-6 люмен) фонарь проработал около 3-х часов. Яркости вполне достаточно, чтобы подсветить себе под ноги в тёмном подъезделесуподвале. Потом еще часа 2 яркость снижалась до уровня «светлячка». Согласитесь, 3-4 часа с приемлемым светом, могут многое решить.
За сим позвольте откланяться.
Stari4ok.

Строительный журнал
Добавить комментарий