Блок питания на tl431 с регулировкой выходного напряжения схема

Фотореле с гистерезисом на tl431

Фотореле с гистерезисом на tl431

миниатюра поста

Микросхема tl431 содержит всего три вывода: катод, анод и управляющий электрод, который, как видно из блок-схемы, является неинвертирующим входом операционного усилителя. ОУ здесь работает как компаратор: на инвертирующий вход подается 2,5В от внутреннего источника опорного напряжения, на неинвертирующий вход подается напряжение от схемы. Если оно достигнет 2,5В, компаратор сработает и выходной транзистор откроется.

Максимальный ток катода 100мА, напряжение катод-анод не более 36В. Микросхема обладает хорошей термостабильностью: в интервале температур от -40 до +120 градусов напряжение срабатывания изменяется всего на 7мВ.

Распиновка микросхемы tl431, вид сверху:

Проверить исправность tl431 можно мультиметром в режиме прозвонки диодов. Для этого красный щуп мультиметра соединяем с анодом а черный с катодом, мультиметр покажет падение 0,6В на внутреннем диоде. Меняем местами щупы и мультиметр покажет обрыв. Теперь не отсоединяя щупы соединим управляющий электрод с катодом. Мультиметр покажет падение 2,49В

Микросхема применяется в основном в источниках питания в качестве управляемого стабилитрона. Но можно собрать на ней и очень простое фотореле:

Схема очень простая, но имеет недостатки. При медленном изменении освещенности светодиод загорается и тухнет плавно, отсутствует гистерезис, требуется высокоомный резистор.

Если поменять местами фотодиод и резистор схема инвертируется: светодиод будет загораться при увеличении освещенности. В этом случае резистор потребуется меньшего номинала, а чтобы светодиод опять загорался при уменьшении освещенности его тоже нужно подключить инверсно — между катодом и анодом tl431:

Чтобы еще больше уменьшить сопротивление этого резистора, можно применить фототранзистор. В этом случае будет достаточно сопротивления 100-150кОм:

Если нет готового фототранзистора можно использовать соединение фотодиода и транзистора. Транзистор можно взять любой маломощный. Подойдет даже кт315. Чем больше коэффициент передачи этого транзистора, тем чувствительнее будет фототранзистор.

Гистерезис и резкое переключение можно получить добавив еще один транзистор.

При уменьшении освещенности фототранзистора его сопротивление растет, напряжение на нем нарастает. Когда оно начнет приближаться к отметке 2,49В стабилитрон tl431начнет открываться. Вместе с ним начнет открываться транзистор и напряжение на управляющем выводе tl431 начнет нарастать быстрее за счет резистора обратной связи R2. Приоткрывание tl431 вызывает приоткрывание транзистора, а приоткрывание транзистора вызывает еще большее открывание tl431. Процесс происходит лавинообразно.

Транзистор и tl431 полностью открыты, светодиод светится. Если теперь начать плавно увеличивать освещенность фототранзистора, это не вызовет моментального закрытия tl431 и транзистора. Транзистор у нас полностью открыт, к верхнему плечу делителя R1VT1 — резистору R1, оказывается параллельно подключен резистор R2. Этим резистором обеспечивается гистерезис. Сопротивление верхнего плеча делителя стало меньше, и теперь для закрытия tl431 нужно осветить фототранзистор чуть сильнее чем он был освещен в момент включения светодиода. Чем меньше сопротивление резистора R2, тем шире петля гистерезиса, то есть тем сильнее нужно теперь осветить фототранзистор, чтобы светодиод погас.

Намного проще понять что такое гистерезис, собрав схему самому, и наблюдая за ее работой при различных значениях резистора R2.

Чтобы этой схемой включать большую нагрузку можно на место светодиода поставить оптопару и симистор. Для механического реле нужно добавить в схему стабилизатор напряжения для питания делителя, так как при срабатывании реле проседает напряжение питания и реле начинает быстро включатся и выключатся.

Стабилизатор можно поставить на напряжение от 5 до 9В. Диод D1 отключает резистор R2 от минуса. В предыдущей схеме он был не нужен, так как в коллекторной цепи был резистор 1кОм и светодиод. Сопротивление обмотки реле обычно очень маленькое и при закрытом транзисторе резистор R2 окажется подключен параллельно фототранзистору и схема работать не будет.

Транзистор VT1 должен быть с током коллектора превышающим ток срабатывания реле. Резистор R4 ограничивает базовый ток транзистора. Берем ток, достаточный для срабатывания реле. Пусть это будет скажем 200mA. Коэффициент передачи тока транзистора пусть будет 100. Значит для получения такого тока коллектора, базовый ток должен быть не менее чем 2mA. То есть взяли желаемый ток коллектора и поделили на коэффициент передачи тока транзистора, получили минимальный базовый ток. Этот ток лучше всегда брать с запасом, так как коэффициент передачи транзисторов имеет разброс. Теперь находим нужный номинал резистора. Берем напряжение питания, отнимаем 2,5-3 вольта(столько падает на tl431 и переходе транзистора) и делим на необходимый ток базы. Расчетное сопротивление получилось 4,5кОм. Берем ближайшее меньшее значение 4,3кОм. Резистор R3 служит для надежного закрытия транзистора.

  • миниатюра постаЗажигалка для газа на тиристоре
  • миниатюра постаФотореле на триггере Шмитта
  • миниатюра постаПрограммируемый таймер CD4541
  • миниатюра постаРеле времени и фотореле на таймере NE555

Блок питания на tl431 с регулировкой выходного напряжения схема

Микросхема TL431 — это регулируемый стабилитрон. Используется в роли источника опорного напряжения в схемах различных блоков питания.

  • напряжение на выходе: 2,5…36 вольт;
  • выходное сопротивление: 0,2 Ом;
  • прямой ток: 1…100 мА;
  • погрешность: 0,5%, 1%, 2%;
  • отечественным аналогом TL431 является КР142ЕН19А.

Имеет три вывода: катод, анод, управляющий вывод.

Микросхема стабилитрон TL431 может использоваться не только в схемах питания. На базе TL431 можно сконструировать всевозможные световые и звуковые сигнализаторы. При помощи таких конструкций возможно контролировать множество разнообразных параметров. Самый основной параметр — контроль напряжение.

Переведя какой-нибудь физический показатель при помощи различных датчиков в показатель напряжения, возможно изготовить прибор, отслеживающий, например, температуру, влажность, уровень жидкости в емкости, степень освещенности, давление газа и жидкости.

Индикатор повышения напряжения

Работа данного индикатора организована таким образом, что при потенциале на управляющем контакте TL431 (вывод 1) меньше 2,5В, стабилитрон TL431 заперт, через него проходит только малый ток, обычно, менее 0,4 мА. Поскольку данной величины тока хватает для того чтобы светодиод светился, то что бы избежать этого, нужно просто параллельно светодиоду подсоединить сопротивление на 2…3 кОм.

В случае превышения потенциала, поступающего на управляющий вывод, больше 2,5 В, микросхема TL431 откроется и HL1 начнет гореть. Сопротивление R3 создает нужное ограничение тока, протекающий через HL1 и стабилитрон TL431. Максимальный ток проходящий через стабилитрон TL431 находится в районе 100 мА. Но у светодиода максимально допустимый ток составляет всего 20 мА. Поэтому в цепь светодиода необходимо добавить токоограничивающий резистор R3. Его сопротивление можно рассчитать по формуле:

R3 = (Uпит. – Uh1 – Uda)/Ih1

где Uпит. – напряжение питания; Uh1 – падение напряжения на светодиоде; Uda – напряжение на открытом TL431 (около 2 В); Ih1 – необходимый ток для светодиода (5…15мА). Также необходимо помнить, что для стабилитрона TL431 максимально допустимое напряжение составляет 36 В.

Читать еще:  Регулировка выходного напряжения на uc3842

Величина напряжения Uз при котором срабатывает сигнализатор (светится светодиод), определяется делителем на сопротивлениях R1 и R2. Его параметры можно подсчитать по формуле:

R2 = 2,5 х Rl/(Uз — 2,5)

Если необходимо точно выставить уровень срабатывания, то необходимо на место сопротивления R2 установить подстроечный резистор, с бОльшим сопротивлением. После окончания точной настройки, данный подстроичник можно заменить на постоянный.

Иногда необходимо проверять несколько значений напряжения. В таком случае понадобятся несколько подобных сигнализатора на TL431 настроенных на свое напряжение.

Индикатор низкого напряжения

Разница данной схемы от предшествующей в том, что светодиод подключен по иному. Данное подключение именуется инверсным, так как светодиод светится только когда микросхема TL431 заперта.

Если же контролируемое значение напряжения превосходит уровень, определенный делителем Rl и R2, микросхема TL431 открывается, и ток течет через сопротивление R3 и выводы 3-2 микросхемы TL431. На микросхеме в этот момент существует падение напряжения около 2В, и его явно не хватает для свечения светодиода. Для стопроцентного предотвращения загорания светодиода в его цепь дополнительно включены 2 диода.

В момент, когда исследуемое величина окажется меньше порога определенного делителем Rl и R2, микросхема TL431 закроется, и на ее выходе потенциал будет значительно выше 2В, вследствие этого светодиод HL1 засветится.

Индикатор изменения напряжения

Если необходимо следить всего лишь за изменение напряжения, то устройство будет выглядеть следующим образом:

В этой схеме использован двухцветный светодиод HL1. Если потенциал ниже порога установленного делителем R1 и R2, то светодиод горит зеленым цветом, если же выше порогового значения, то светодиод горит красным цветом. Если же светодиод совсем не светится, то это означает что контролируемое напряжение на уровне заданного порога (0,05…0,1В).

Работа TL431 совместно с датчиками

Если необходимо отслеживать изменение какого-нибудь физического процесса, то в этом случае сопротивление R2 необходимо поменять на датчик, характеризующейся изменением сопротивления вследствие внешнего воздействия.

Пример такого модуля приведен ниже. Для обобщения принципа работы на данной схеме отображены различные датчики. К примеру, если в качестве датчика применить фототранзистор, то в конечном итоге получится фотореле, реагирующее на степень освещенности. До тех пор пока освещение велико, сопротивление фототранзистора мало.

Вследствие этого напряжение на управляющем контакте TL431 ниже заданного уровня, из-за этого светодиод не горит. При уменьшении освещенности увеличивается сопротивление фототранзистора. По этой причине увеличивается потенциал на контакте управления стабилитрона TL431. При превышении порога срабатывания (2,5В) HL1 загорается.

Данную схему можно использовать как датчик влажности почвы. В этом случае вместо фототранзистора нужно подсоединить два нержавеющих электрода, которые втыкают в землю на небольшом расстоянии друг от друга. После высыхания почвы, сопротивление между электродами возрастает и это приводит к срабатыванию микросхемы TL431, светодиод загорается.

Если же в качестве датчика применить терморезистор, то можно сделать из данной схемы термостат. Уровень срабатывания схемы во всех случаях устанавливается посредством резистора R1.

TL431 в схеме со звуковой индикацией

Помимо приведенных световых устройств, на микросхеме TL431 можно смастерить и звуковой индикатор. Схема подобного устройства приведена ниже.

Данный звуковой сигнализатор можно применить в качестве контроля за уровнем воды в какой-либо емкости. Датчик представляет собой два нержавеющих электрода расположенных друг от друга на расстоянии 2-3 мм.

Как только вода коснется датчика, сопротивление его понизится, и микросхема TL431 войдет в линейный режим работы через сопротивления R1 и R2. В связи с этим появляется автогенерация на резонансной частоте излучателя и раздастся звуковой сигнал.

Схема включения стабилитрона tl431 и проверка микросхемы мультиметром

Стабилитроны для выравнивания напряжения

Электронный компонент tl 431 — это одна из интегральных микросхем, чьё производство поставлено на массовый поток, начиная, с 1978 года. Она широко используется в большинстве компьютерных блоков питания, телевизоров и другой бытовой технике в качестве прецизионного программируемого источника опорного напряжения. На практике сложилось несколько схем включения tl431.

Устройство электронного элемента

TL431, что это за

Микросхема обладает простой конструкцией, состоящей из следующих элементов: корпуса, операционного усилителя (ОУ), выходного tl431 транзистора, а также источника опорного напряжения. Особенностью этой микросхемы является то, что она выполняет функции стабилитрона.

Источник опорного напряжения на 2.5 вольта, обладающий высокой стабильностью, подключается к инверсному входу ОУ (-), эмиттеру транзистора и землёй с помощью двух общих точек в цепь опорного напорного также включён кремниевый диод. Он предназначен для предотвращения создания обратного тока и защищает от переполюсовки. Прямой вход ® предназначен для приёма сигнала с других плат, а также питания усилителя. Он подключается через диод к коллектору транзистора также через общую точку. Выход ОУ подключён к базе транзистора.

Следует помнить, что транзистор, используемый в микросхемах данной серии, способен выдержать нагрузки до 0.1 А и 36 В.

Принцип работы

Работа микросхемы основана на принципе превышения напряжения поданного на прямой вход ОУ над опорным. При U (напряжении на прямом входе) меньше или равным Vref (опорном напряжении на выходе) будет подобное низкое напряжение, из-за чего транзистор не откроется, а ток по цепи анод-катод не будет поступать. Как только U превысит Vref на выходе ОУ, образуется напряжение, способное открыть транзистор и заставить ток протекать от катода к аноду, что заставляет микросхему работать.

Цоколёвка tl341

Блок-схема TL431

TL 341 представляет собой трёхвыводную микросхему. Каждая ножка имеет собственное название 1 — reference (выход), 2 — anode (анод) и 3 — catode (катод).

На практике цоколёвка бывает различной и зависит от типа корпуса выбранного производителем при изготовлении изделия. TL431 выпускается в большом количестве разных корпусов, от древних TO-92 до современных SOT-23. Распиновка tl431 в зависимости от вида корпуса изображены на рисунке 3.

Аналогами tl431 отечественного производства являются микросхемы КР142ЕН19А и К1156ЕР5Т. К зарубежным аналогам можно отнести:

  • KA431AZ;
  • KIA431;
  • HA17431VP;
  • IR9431N;
  • AME431BxxxxBZ;
  • AS431A1D;
  • LM431BCM.

Технические характеристики

Основными техническим характеристиками микросхемы tl 341 являются:

TL431

  • напряжение анод-катод, которое может варьироваться от 2,5 до 36 В;
  • анодно-катодный ток, находящийся в пределах от 1 мА до 0,01 А;
  • точность источника, зависящая от наличия буквы после цифровых обозначений, если буква отсутствует, то этот параметр составляет 2%, присутствует, А (1%) или В (0,5%).

Из характеристик видно, что микросхему можно использовать при довольно обширном диапазоне напряжения, однако пропускная способность по току весьма невелика. Чтобы получить более серьёзные, к катодной цепи подключают мощные транзисторы, которые регулируют выходные параметры.

Схемы включения

Микросхема tl 431 представляет собой стабилитрон интегрального типа. Она обладает тремя схемами включения:

  • на 2.48 В (1);
  • на 3, 3 В (2);
  • на 14 В.

Вариант 1: схема на 2,48 В.

Схема включения стабилитрона на 2.48 вольта оснащена одноступенчатым преобразователем. Среднее значение рабочего тока в подобной системе составляет 5.3 А. К выводу ref (цепь опорного напряжения) монтируется цепь, состоящая из двух параллельно соединённых резисторов (по 2.4 и 2.26 кОм). На эти резисторы предварительно подаётся напряжение равное 5 В, которое после прохождения цепи превращается в 2,48.

С целью повышения чувствительности стабилитрона применяются разнообразные модуляторы, в основном, дипольного типа с ёмкостью менее 3 пФ (пикофарад). Стабилитроны подключают к катоду.

Вариант 2: схема включения на 3,3 В.

Читать еще:  Как отрегулировать громкость домофона vizit

Для чего TL431

В схеме включения на 3,3 В также используется одноступенчатый преобразователь и резистор на 1 кОм, подключённый к катоду. Перед сопротивлением ставится сторонний источник питания на 3 В. К выводу (ref) подключается конденсатор ёмкостью 10 нФ, соединённый с землёй. Анод в подобной схеме сажается напрямую на землю, а катодная и входная цепи соединяются двумя общими точками.

Проблемой этой схемы включения является большая вероятность возникновения короткого замыкания (КЗ). Для того чтобы снизить риск возникновения КЗ, после стабилитронов монтируют предохранитель.

Чтобы усиливать сигнал к выводу подключают специальные фильтры. В такой схеме включения средние показатели напряжения и тока составляют 5 В/ 3.5 А, а точность стабилизации менее 3%. Стабилитрон подключается через векторный переходник поэтому нужно подбирать транзистор резонного типа Средняя ёмкость модулятора должна составлять 4.2 пФ. Для увеличения проводимости тока можно использовать триггеры.

Независимые устройства на базе микросхемы

Эту микросхему используют в блоках питания телевизоров и компьютером. Однако на её базе можно составить независимые электрические схемы некоторыми, из которых являются:

  • стабилизатор тока;
  • звуковой индикатор.

Стабилизатор тока

Стабилизатор тока — это одна из самых простых схем, которые можно реализовать на микросхеме tl 341. Он состоит из следующих элементов:

  • источника питания;
  • сопротивления R 1, подключённого с помощью общей точки к + линии питания;
  • шунтирующего сопротивления R 2 к — линии питания;
  • транзистора, чей эмиттер подключён к — линии через резистор R 2, коллектор к выходу — линии, а база через общую точку к катоду микросхемы;
  • микросхемы tl 341, чей анод подключён к — линии с помощью общей токи, а вывод ref включён в эмиттерную цепь транзистора также с помощью общей точки.

Основную роль в данной схеме выполняет шунтирующий резистор R 2, который за счёт обратной связи устанавливает значение, напряжение равное 2,5 В. Из-за этого выходной ток будет принимать следующий вид: I=2,5/R2.

Звуковой индикатор

Свойства TL431

Звуковой индикатор на базе tl 341 представляет собой простую схему, изображённую на рисунке 5

Такой звуковой индикатор можно использовать для отслеживания уровня воды в какой-либо ёмкости. Датчик представляет собой электронную схему в корпусе с двумя выводными электродами, изготовленными из нержавеющей стали, один из которых расположен на 20 мм выше другого.

В момент соприкосновения выводов датчика с водой происходит снижение сопротивления и осуществляется переход tl 341 в линейный режим через резисторы R 1и R 2. Это способствует появлению автогенирации на резонансной частоте и образованию звукового сигнала.

Проверка работоспособности с помощью мультиметра

Вопросом о том, как проверить tl431 с помощью мультиметра, задаются многие. Ответ на него достаточно прост для того, чтобы проверить микросхему tl341 или её модификации tl431a необходимо выполнить следующие действия:

11 схем питания различной сложности

В полной мере сказанное относится не только к ламповым проектам, поэтому все, что будет описано ниже, пригодится и для цифровых, и для аналоговых трактов на полупроводниках.

«А в чем, собственно, проблема? Для накала существуют трехвыводные сильноточные стабилизаторы, а анодные делаются либо на тех же лампах, либо на высоковольтных MOSFET’ах», — такова была первая реакция большинства конструкторов аудио, с кем я пытался завести разговор на эту тему. А жизнь, между прочим, не так проста, как кажется на первый взгляд. Любимые всеми интегральные стабилизаторы серий LM78, LM79, LM317 и LM337 очень удобны и стоят копейки, но в технике класса High End применяются крайне редко из-за широкого спектра ВЧ-шумов, которые у них вообще не нормируются. Эти шумы не слышны, но, взаимодействуя с полезным сигналом, становятся причиной интермодуляции. А вот она уже ведет к излишней жесткости на верхних частотах и частичной потере разрешения. Если от такого стабилизатора питаются катоды прямонакальных ламп, особенно входных, вы можете вообще потерять интерес к проекту — вся грязь из сети, изрядно приправленная собственным шумом микросхемы, будет усилена и попадет на выход усилителя. Поэтому серьезные разработчики в последнее время все чаще предпочитают более сложную схемотехнику, но гарантирующую защиту от ВЧ-неприятностей. Что же касается высоковольтных стабилизаторов, то там ситуация еще хуже. Во-первых, в качестве источников эталонного напряжения используются либо кремниевые, либо газоразрядные стабилитроны, и включаются они, как правило, в катод управляющей лампы (или эмиттер транзистора, что существа дела не меняет). Во-вторых, в ламповых усилителях, особенно однотактных, проходной элемент стабилизатора находится в цепи звукового сигнала и вносит в него свой неповторимый акцент. Так что, кроме конденсаторов, усилительных ламп и трансформаторов, вы будете еще слушать какой-нибудь MOSFET или 6С33С. У меня есть подозрение, что аналогичная ситуация наблюдается и в транзисторных усилителях, но сам не экспериментировал, врать не стану.

Начнем с питания низковольтных цепей — накала, смещения и т.д. В каталоге любого крупного производителя полупроводников обязательно есть малошумящие источники опорного напряжения, и некоторые с регулируемым напряжением выхода. У этих стабилитронов только один минус — ток через переход ограничен несколькими миллиамперами, поэтому для сколько-нибудь серьезной нагрузки их придется дополнить внешним проходным транзистором. Наиболее широко распространен чип TL431, выпускаемый фирмой Texas Instruments. Напряжение шумов на его выходе около 7 мкВ на частоте 10 Гц, стоит около 16 руб. и выглядит, как обычный маломощный транзистор в пластмассовом корпусе ТО-92. Очень удачная схема его применения выложена на сайте www.klausmobile.narod.ru (рис.1).

Здесь IC1 служит источником опорного напряжения, а IC2 является датчиком схемы защиты от КЗ выхода. Достоинство схемы в том, что в качестве проходного элемента работает МДП-транзистор с изолированным затвором, поэтому при любой нагрузке (схема нормирована до 5 А) ток через стабилитрон остается в пределах нормы. R3 задает выходное напряжение, а R2 — ток срабатывания защиты. MOSFET может быть любым из серий IRF400 — 600 и устанавливается на теплоотводе. Рассеиваемая на нем мощность подсчитывается по формуле P = (Uвх — Uвых) x Iнагр. Если стабилизатор должен обеспечивать фиксированное напряжение, то его тоже легко рассчитать: Uвых = (1+R1/R2) x Uref, где Uref — опорное напряжение TL431, т.е 2,5 В. Из этого легко видеть, что для получения Uвых = 5 В, например, питания цифровой части ЦАПа, сопротивления R1 и R2 должны быть одного номинала (примерно 3,3 — 6,8 К).

Для слаботочных цепей, например, сеточного смещения или питания ОУ в тракте CD-проигрывателя, очень хороши параллельные стабилизаторы. В них регулирующий элемент включен параллельно нагрузке, что имеет неоспоримые преимущества — по переменному току его сопротивление очень мало, а по постоянному — очень велико. Вам это ничего не напоминает? Правильно, конденсатор, причем без какой-либо абсорбции, утечки, с мизерным ESR и индуктивностью. Короче, почти идеальный. Пример такого стабилизатора показан на рис. 2. Источник опорного напряжения здесь тот же — TL431, и выходное напряжение рассчитывается по той же самой формуле и подстраивается триммером R1. Стабилизация (если кто не знает) происходит за счет падения напряжения на резисторе R0. Номинал R3 выбирается с тем расчетом, чтобы ток через TL431 был в пределах 1 — 3 мА. Еще более очевидны выгоды такой схемы для построения высоковольтных стабилизаторов, но об этом ниже.

Читать еще:  Регулировка напора воды в смесителе с термостатом

На той же TL431 легко собрать схему задержки включения анодного питания (рис. 3). Время задержки задается параметрами цепочки R1/С1 и при указанных номиналах составляет около 25 секунд. Оптрон — 293КП9В или ему подобный.

В схемах дифференциальных каскадов с т.н. long tail отрицательное напряжение для лучшей симметрии следует подавать через источник тока. Часто для этого используют лампы. А если нет места, или трансформатор питания работает на пределе и уже не потянет еще один накал?

Пригодится простенькая схемка на полевом транзисторе (рис. 4). Единственный элемент, на качество которого стоит обратить внимание — электролитический конденсатор в делителе затвора. Он должен быть либо Black Gate, либо Elna Cerafine. Собирается источник тока на крошечной печатной плате и может быть встроен в любой усилитель при апгрейде. Отрицательное напряжение на «хвост» можно получить выпрямлением напряжения накала.

Еще один возможный путь апгрейда — снижение шумов стандартных источников питания. Способ примерно тот же, т.е. шунтирование шины питания активным фильтром с определенными параметрами (рис. 5). Без какой-либо настройки он подавляет ВЧ-составляющую на 20 дБ, а если подобрать резистор в цепи эмиттера, то можно додавить их и до 40 дБ. Потребление тока самим шунтом около 10 мА, так что он вряд ли перегрузит стабилизатор. Если ток в нагрузке более 300 мА, то шунт придется умощнить (рис. 6). Для этого понадобится составной транзистор (КТ825/827 в зависимости от полярности источника), который будет забирать на себя уже около 40 мА. Зато им можно «чистить» сильноточные шины, например накальные. Если в предварительном усилителе или фонокорректоре выносной блок питания, то к сетевым помехам и шумам стабилизатора добавятся ВЧ и СВЧ-наводки на соединительные провода. Частично эта проблема решается с помощью ферритовых колец, надеваемых на жгут или отдельные проводники, но гораздо более заметный эффект дает схема, показанная на рис. 7. Она ставится на приемном конце, т.е. в самом усилителе, и питается от той же шины, которую чистит. ОУ должен быть по возможности малошумящим и широкополосным, к качеству остальных деталей особых требований не предъявляется. На рис. 8 видно, что эффективность подавления шумов на частоте 100 Гц достигает 24 дБ без точного подбора номиналов. Более подробное описание этих шумоподавителей можно найти по адресу www.wenzel.com/documents/finesse.html .

Рис. 5
Рис. 6
Рис. 7
Рис. 8

Теперь об анодном питании. В 1998 г. компания Technics начала выпускать усилители DVD Audio Ready, т.е. с расширенным динамическим диапазоном. Для них пришлось разрабатывать новые источники питания, поскольку при имеющихся невозможно было снизить шумы усилителя до нужной величины. Была запатентована схема т.н. виртуальной батареи или, как ее еще называют, схема с умножением емкости. Высоковольтный вариант такой батареи показан на рис. 9 (верхняя часть схемы). Как видите, здесь вообще нет стабилитрона, поэтому, строго говоря, это не стабилизатор, а фильтр с составным проходным элементом. Суть идеи в том, что входное сопротивление МДП-транзистора — несколько сотен мегаом, что позволяет подключить его затвор к RC-цепочке с такой огромной постоянной времени (4,7 мОм и 47 мкФ соответственно), что никакие помехи через нее не проходят. Минусы схемы — уже упомянутое отсутствие стабилизации и очень долгий заряд, время которого составляет примерно 20 мин. Аппарат с таким источником питания вообще выключать не рекомендуется.

Более серьезные люди питают аноды ламп от параллельных стабилизаторов. Помимо перечисленных выше преимуществ, они обладают и еще одним — после выключения питания быстро разряжают емкости фильтров. Кстати, об этом почему-то мало кто заботится, а ведь вреда от этого ничуть не меньше, чем при подаче напряжения на анод холодной лампы. В предах, например, конденсаторы разряжаются несколько минут, а катоды остывают значительно быстрее. Кроме того, шунты начинают потреблять ток мгновенно после включения, благодаря чему фильтр застрахован от перегрузок по напряжению в режиме холостого хода. Схема относительно простого и недорогого шунт-регулятора (рис. 10) содержит мощный высоковольтный MOSFET IRF820 и схему управления на малошумящем ОУ TL-071. Опорное напряжение задается делителем на инвертирующем входе, а напряжение шины питания контролируется через интегрирующую RC-цепочку 1,5 мОм и 1 мкФ. Между выходом ОУ и затвором транзистора стоит режекторный ВЧ-фильтр, вырезающий самый вредный участок шумового спектра. Обратите внимание, что нагрузка подключается к шинам в том месте, где припаяны элементы делителя, еще лучше подключить верхнюю точку интегрирующей цепочки непосредственно к потребителю, например, к анодной обмотке выходного трансформатора. Между выпрямителем и стабилизатором должно быть включено либо сопротивление, на котором будет падать разница напряжений, либо, что значительно лучше, мощный источник тока. Такой, например, как на рис. 11 слева. Это вообще очень интересная схема, ее автор, Манфред Хубер (http://home.t-online.de/home/MHuber/bjtreg.htm) уверен, что она дает тот же эффект, что и тефлоновый конденсатор емкостью 1000 мкФ, включенный параллельно нагрузке. Я пробовал запитывать от этого стабилизатора фонокорректор с выходным трансформаторным каскадом на 4П1Л, разница по сравнению с виртуальной батареей действительно заметна на слух. Во-первых, бас становится более собранным, заметно уменьшается интермодуляция, схема — менее чувствительной к качеству трансформатора. Очевидно, возвратный путь сигнала на землю здесь намного короче, да и выходное сопротивление источника практически не зависит от частоты. Заодно несколько советов: если выходное напряжение не должно регулироваться в широких пределах, дорогие полевые транзисторы BSS135 (около 120 руб. каждый), работающие как источники тока стабилитронов LM4041 и ZPD30, можно заменить обычными сопротивлениями. Их номинал рассчитывают так, чтобы через них протекал ток 1,3 мА. Транзисторы ZTX458/558 фирмы Zetex с напряжением Uкэ = 450 В у нас найти невозможно, зато есть недорогие аналоги Philips и Motorola. Ток стабилизатора рассчитывается по формуле I = 1,23/(P1 + R2), а напряжение вот как: Uвых = 30(1 + (P2 + R9)/R8). Число 30 означает напряжение стабилитрона D4, если будет другой, нужно внести поправку. Стабилитронов здесь бояться не надо — шум D4 гасится цепочкой R5-C2-C5, а D5 выполняет сугубо защитные функции, и в нормальном режиме лавинного пробоя в нем нет. Транзисторы Q2 и Q8 устанавливаются на теплоотводы, способные рассеять 6 — 8 Вт.

Рис. 10
Рис. 11

Приятных вам экспериментов, и будьте осторожнее с высоким напряжением!

Подготовлено по материалам журнала «Салон AudioVideo», февраль 2017 г. www.salonav.com

Поделитесь статьёй:

Строительный журнал
Добавить комментарий