Регулирование трансформатора
Регулирование трансформатора
Регулирование напряжения в трансформаторе производится путем изменения количества витков обмотки, расположенной в трансформаторе. Такая регулировка позволяет поддерживать нормальный уровень напряжения в точках конечного потребления электрической энергии.
В большей части силовых трансформаторов предусмотрено наличие специальных приспособлений, которые предназначены для тонкой настройки необходимого коэффициента трансформации. Регулировка проводится при помощи отключения или добавления количества витков.
Обычно настройка выполняется посредством анцапфы – специального переключателя количества витков в трансформаторе, находящемся под электрической нагрузкой. Если трансформатор обесточен или заземлен, переключение производится методом выбора определенного положения соединения болта.
Уровень сложности системы, которая позволяет переключать количество витков, оценивается по частоте, с которой происходит переключение. Также при определении уровня учитываются размеры и ответственность трансформатора.
Электрическое напряжение в сети изменяется в соответствии со степенью ее нагрузки. Чтобы обеспечивать нормальную работу электрических приборов потребителей, необходимо поддержание напряжения на заданном уровне. Следует избегать отклонения, особенно в сторону увеличения напряжения, так как это может привести к выходу из строя электрических приборов. Поэтому применяются разные методы, позволяющие регулировать напряжение в электрической сети. Одним из эффективных способов можно назвать изменение коэффициента трансформации. Он предусматривает изменение соотношения количества витков обмотки, расположенных в первичной цепи и во вторичной цепи трансформатора.
Регулирование может проводиться в момент, когда трансформатор работает. В этом случае используется термин РПН, т.е. регулирование, осуществляемое под нагрузкой. Если настройка выполняется после выключения трансформатора из сети, то используется термин ПБВ, т.е. переключение, осуществляемое без возбуждения. В обоих случаях проводится переключение между ответвлениями обмотки, что позволяет изменять величину коэффициента трансформации.
Регулирование, осуществляемое под нагрузкой
Такой тип переключения используется, когда необходимо оперативно изменить параметры, а также в случаях, когда условия требуют выполнения регулярных изменений. Например, если дневная и ночная нагрузка на электрическую сеть различается. В зависимости от мощности трансформатора, а также от разницы напряжения, на которую необходимо изменить настройки, РПН может варьировать показатель коэффициента трансформации в границах 10-16%. При этом на одно ответвление приходится приблизительно по 1,5%. Регулирование проводится со стороны высокого напряжения, так как именно там значение силы тока меньше. Поэтому выполнять РПН обходится дешевле и проще.
Предусмотрена возможность автоматического и ручного регулирования. Во втором случае процесс осуществляется из ОПУ или посредством пульта управления. Устройства, предназначенные для регулирования напряжения находящегося под нагрузкой трансформатора, появились в 1905-1920 годах. Принцип действия таких устройств также основывается на изменении количества витков. Сложности, связанные с выполнением подобных устройств, включают в себя:
- Невозможность простого разрыва электрической цепи путем изменения количества витков, что допустимо при проведении ПБВ, например. Такая невозможность обусловлена образованием электрической дуги, обладающей большой мощностью и большим перенапряжением, которые возникают в результате действия индукции ЭДС.
- Использование кратковременных замыканий, происходящих в части витков обмотки. Замыкания возникают во время переключения ступени напряжения.
Чтобы ограничить силу тока в обмотках, в которых возникло короткое замыкание, требуется применять сопротивления, способные ограничивать силу тока. В качестве таких сопротивлений применяются резисторы, а также индуктивности или реакторы.
Выполнение регулирования напряжения в автоматическом режиме
Переключатель, при помощи которого изменяется количество витков, устанавливается, чтобы регулировать напряжение в подсоединенных к трансформатору линиях сети. Не всегда главной целью является поддержание одного значения вторичного напряжения в трансформаторе. Обычно перепады напряжения возникают во внешней электрической сети. Часто это актуально для мощных и дальних нагрузок. Чтобы поддерживать оптимальное напряжение для дальних потребителей, возможно использование метода увеличения напряжения, возникающего на вторичной обмотке прибора.
Система, позволяющая осуществлять ПБВ, принадлежит к релейной защите и относится к автоматике станции. В этом случае переключатель, регулирующий количество витков, лишь получает команды, согласно которым увеличивает или уменьшает это число. Обычно функция, которая предназначена согласовывать коэффициенты трансформации между отдельными трансформаторами в пределах одной станции, выполняется при помощи системы ПБВ. Если образуется параллель при соединении трансформаторов, необходимо поддерживать синхронизацию движения их переключателей количества витков. В этом случае выбирается ведущий трансформатор, а все остальные являются ведомыми.
Системы управления ПБВ ведомых трансформаторов отслеживают изменения коэффициента, устанавливаемого ведущим трансформатором. Синхронное переключение количества витков позволяет исключать циркулирующие токи, которые могут возникать благодаря разнице вторичных напряжений между обмотками соединенных параллельно трансформаторов. Хотя как показывает практика, полностью исключить циркулирующие токи практически невозможно вследствие рассогласования в момент переключения. Однако в определенных пределах – это допустимая норма.
Последовательно подсоединенные регулировочные трансформаторы
Чтобы регулировать коэффициент трансформации в мощных трансформаторах или автотрансформаторах, целесообразно использовать регулировочные трансформаторы, которые еще называют вольтодобавочные. Такие трансформаторы последовательно подсоединяются к основным трансформаторам, позволяя изменять и напряжение, и его фазу. Такой способ регулирования применяется достаточно редко, так как схема отличается сложностью, а стоимость регулировочного прибора относительно высока.
Особенности работы пбв трансформатора и расшифровка
Потребители электрической энергии более эффективно работают при номинальном напряжении. Однако это условие для всех довольно сложно. Допустимым у потребителей является его отклонение до +5%. Чтобы достигнуть значения напряжения, близкого по значению к номинальныму, численность витков обмоток трансформатора изменяют. Осуществить это можно двумя способами:
- используя устройство ПБВ трансформатора;
- регулируя напряжение под нагрузкой.
Связь регулировки напряжения с изменением количества витков
Имеется несколько методов поддержки значения напряжения у потребителей в надобных пределах. Среди них особое место занимает способ его регулирования. Достоинства этого способа являют собой:
- улучшение режима напряжения у потребителей;
- увеличение допустимой потери напряжения;
- повышение качества электроэнергии, которая доставляется потребителям.
При проектировании электрических сетей выбирают средства, границы и степени регулировки, место установки регуляторов, а также систему их автоматизации.
Значение первичного и вторичного напряжения прямо пропорционально зависит от числа витков обмоток, в которых оно протекает:
U 1 / U 2 ≈W 1 / W 2,
где U 1, U 2 — соответственно первичное и вторичное напряжение;
W 1 / W 2 — соответственно количество витков первичной и вторичной обмотки
Из этого вытекает, что для изменения напряжения на выходе трансформатора необходимо менять количество витков одной из обмоток. Благодаря этому обмотка, которая будет задействована в переключении, производится с ответвлениями.
Несмотря на простоту процесса, существуют и некоторые трудности. При переключении с одного ответвления на другое ни в коем случае нельзя разрывать цепь тока. Одновременно с этим требованием запрещается, чтобы контакты переключателя замкнули два соседних ответвления, иначе короткого замыкания этой части обмотки не избежать. А это, в свою очередь, приведёт к её повреждению из-за возникнувших больших токов.
Существует два способа для удовлетворения этих условий: переключение ответвлений обмоток после отключения от сети всех его обмоток и во время работы, при нагрузке.
Основные понятия о пбв трансформатора
ПБВ трансформатора имеет очень простую расшифровку, которая заключается в первых буквах слов — «переключение без возбуждения». Это означает, что все переключения необходимо проводить у трансформатора, который отсоединён от источника питания.
Но также широко известно другое название устройства пбв трансформатора — анцапфа. Анцапфа (переключатель) — это устройство, с помощью которого число витков обмотки допустимо изменить для регулирования выходного напряжения.
Переключатель предназначен для того, чтобы изменить коэффициент трансформации в пределах 5%, меняя задействованную в работе численность витков обмотки высокого напряжения.
Место установки анцапфы
У трансформаторов, которые имеют многослойную цилиндрическую обмотку при мощности до 560 кВА, месторасположение анцапфы находится возле нулевой точки.
Если трансформатор изготовлен мощностью до 1000 кВА, напряжением до 10 кВ и имеет непрерывные обмотки, применяют обратную схему с ответвлением около нулевой точки.
В трансформаторах свыше 1000 кВА и 35 кВ, применяется схема с регулировочным ответвлением в средине обмотки. При этом анцапфа состоит из трёх элементов. Они размещены на общей оси один поверх другого. Переключатель замыкает одновременно пару контактов в любой фазе. Этот вид конструкции переключателя наиболее дешёвый и менее габаритный.
Чтобы токи при переключении были невысокими, анцапфу всегда необходимо устанавливать в обмотку высокого напряжения. Этим достигается изготовление отводов и переключателя устройства более компактных габаритов. При этом витков у обмотки высокого напряжения намотано гораздо больше, благодаря чему достигается более высокая точность регулировки.
При переключении анцапфы с одной ступени на другую поворачивают рукоятку переключателя. Она расположена на крыше бака.
При регулировке способом без возбуждения отключение трансформатора вначале со стороны низкого, а затем высокого напряжения является обязательным условием.
Привод рукоятки переключателя закрыт колпаком. Около показателя рукоятки нанесены обозначения +5%, «Ном», —5%. При повороте показателя рукоятки на указание +5% включаются в действие все витки обмотки. При показании «Ном» — на 5% меньше. При установке на обозначение -5% в работе витков обмотки на 10% меньше.
В некоторых типах трансформатора вместо обозначений +5%, «Ном», -5% указываются цифры I, II, III. В таком случае показание I соответствует +5%, II — «Ном», III — 5%.
Если мощность трансформаторов находится в пределах от 25 до 6300 кВА, то их исполняют с ответвлениями при ручном переключении для регулировки напряжения в границах ±5% со ступенями по 2,5%.
Способы ПБВ трансформатора
Переключение трансформатора без возбуждения можно выполнить двумя способами:
- Изменение напряжения при помощи первичной обмотки.
- Регулирование установкой анцапфы во вторичной обмотке.
Если изменение напряжения производят с помощью первичной обмотки, то анцапфу устанавливают в ней. Этот метод находит применение только в понижающих трансформаторах. Этот метод носит также наименование регулирование напряжения изменением магнитного потока.
Невзирая на потерю напряжения в обмотке, можно принять U 1 ≈ Е 1. Электродвижущая сила в первичной обмотке меняться не будет из-за неизменных параметров: частоты и напряжения сети:
Е 1 = 4,44 f W 1 Ф м
Учитывая, что изменений частоты при работе не предвидится, произведение W 1 Ф м изменяться не будет. Поэтому магнитный поток можно уменьшить при подсоединении большего количества витков первичной обмотки. Например, чтобы достичь падения напряжения на зажимах вторичной обмотки на 2,5%, необходимо количество витков первичной обмотки увеличить на 2,5%.
Ответвляющие зажимы понижающих трансформаторов могут обеспечить надбавку +10%. Для этого к ним нужно подсоединить -5% витков.
К примеру, в зависимости от того зажима, к которому подсоединяется переключающее устройство, процент надбавки для понижающего трансформатора напряжением 10 кВ будет меняться.
Зажим | Напряжение сети, В | Надбавка, % |
+5% или I | 10500 | 0 |
«Ном» или II | 10000 | -5 |
-5% или III | 9500 | +10 |
Второй метод применяется в повышающих трансформаторах. Обмотка низкого напряжения (первичная) подключена к сети.
Если частота и напряжение неизменны, магнитный поток будет стабильным, а электродвижущая сила Е 2 будет изменяться в соответствии с изменением витков вторичной обмотки в зависимости от формулы:
Е 2 = 4,44 f W 2 Ф м
Формула свидетельствует о том, что если уменьшается количество витков на зажимах вторичной обмотки, то и напряжение уменьшится. Анализ формулы подтверждает, что численность витков и значение напряжения прямо пропорциональны.
Очень часто в повышающих трансформаторах для получения наивысшего напряжения уже подключено и учтено необходимое количество витков. Поэтому при работе вхолостую повышающий трансформатор будет без надбавки.
Эксплуатация и ремонт устройств
В трансформаторах 10% их поломок составляют неисправности, связанные с повреждением контактной системы анцапфы:
- Неплотное прилегание движимых и недвижимых частей контактов. Это происходит из-за снижения контактного давления, вследствие чего на поверхности контактов образуется оксидная плёнка.
- Со временем место соединения регулировочных ответвлений с частями переключающего устройства ослабевает.
- В течение продолжительного срока эксплуатации прочность соединения регулировочных ответвления и обмотки уменьшается. Основной причиной является некачественная пайка.
Все эти факторы приводят к нагреванию места повреждения, что впоследствии может вызвать аварийную поломку всего трансформатора. Поэтому техническое обслуживание и ремонт оборудования анцапфы занимают достойное место среди остального оборудования.
Первой операцией при ремонте устройства переключателя является осмотр. Оценивание состояния неподвижных и подвижных контактов необходимо, так как они в течение продолжительного времени при работе находятся в трансформаторном масле. Из-за этого покрываются оксидной плёнкой. Для её удаления необходимо основательно очистить контакты ветошью, которая предварительно была смочена очищенным бензином. Если контакты обгорели и оплавились, их заменяют новыми, которые можно приобрести, а можно изготовить самостоятельно. При самостоятельном изготовлении важным условием является подбор материалов для контактов, аналогичных по качеству заводским.
После замены повреждённых деталей затягивают крепления, проводят проверку на отсутствие заклинивания, правильности соприкосновения подвижных и неподвижных контактов, обновляют надписи возле крышки переключателя.
После выполнения всех операций наладки анцапфы необходимо испытание качества её работоспособности. Для этого производятся переключения на все ступени в течение десяти циклов. Помех в работе устройства прослеживаться не должно.
Несовершенством всех настоящих способов регулирования без возбуждения является то, что для переключения ветвей надо отключать трансформатор от источника питания. Это создаёт перебои в поставке электроэнергии потребителям.
Общераспространённым является метод регулирования напряжения под нагрузкой.
Регулировка напряжения на выходе трансформатора
Именно трансформатор стал краеугольным камнем всего переменного электротока. Преобразование одного постоянного напряжение в другое достаточно сложное как по компонентам, так и по настройке. С переменным током все намного проще: все преобразования напряжений на одной частоте осуществляет трансформатор. Просто, дешево и надежно.
Трансформатор представляет собой две катушки из изолированного провода, намотанных на каркас. Каждая катушка имеет свои выводы. Наматываются катушки в одну сторону, если намотать одну катушку в одну сторону, а вторую в противоположную, то эффект трансформатора не проявится, а катушки нагрузятся друг на друга и быстро сгорят. Каркас с обмотками сам по себе ничего не представляет и если включить в сеть просто катушку на каркасе, то обмотка просто сгорит, потому что реактивная составляющая будет очень маленькой. Чтобы увеличить реактивную составляющую нужно вовнутрь каркаса вставить металлические пластины, изолированные друг от друга. Если пластины заменить на цельный кусок стали, то трансформатор работать будет, но перегреваться будет страшно и добиться КПД в 98% будет невозможно. Чем лучше сталь, чем она сильнее стянута ярмом, чем лучше лак, тем выше КПД трансформатора.
Перед переделкой трансформатора необходимо убедиться в его работе. Для этого на выход трансформатора вешается лампочка, а на вход подается напряжение. Если лампочка светится и трансформатор не гудит и не жужжит на улей, то все хорошо и можно приступать к перемотке.
На трансформаторах помечают обмотки. U1 — напряжение сети, иными словами первичная обмотка. Рядом с этим контактом — напряжение этой сети. Для данного трансформатора напряжение сети 220 В. Также есть вторичная обмотка, но она не отмечена. Трансформатор явно перематывался. Поэтому проверить вторичное напряжение можно только подав на первичку питание. Трансформатор ОСМ 0,4 кВА, значит максимальная мощность подключаемой нагрузки 400 Вт. При измерении вторичного напряжение получилось 110 В.
Также в пользу сторонней перемотки трансформатора говорит состояние обмотки — без лака.
Бывает, что катушка трансформатора сгорела — перегрузка или витковое замыкание. Если обмотки не были защищены предохранителями, то лак на меди сгорит, провоцируя дополнительное витковое замыкание. Такой трансформатор нужно перематывать с применением нового обмоточного провода.
Минус такого трансформатора в способе крепления сердечника. Сердечник состоит из пластин, которые скрепляются друг с другом при помощи лака, а все четыре «U»-образные части стянуты стальной полосой. Полоса натягивается шпилькой.
Для перематывания этот трансформатор подходит идеально. Если на выходе сейчас переменки 110 В, то после перемотки станет все обмотки со средней точкой по 55 В. Если перевести это в постоянный ток, то на каждой обмотке будет висеть 55*2^0,5=77,78 В. Вот и отлично. Уменьшать напряжение можно диммером, включенным в разрыв первичной обмотки. Для перематывания нужно разобрать сердечник.
Разборку сердечника нужно проводить осторожно чтобы не повредить обмотку. Осторожно расшатать, отверткой расширить щель между четвертинами и вытянуть четвертинки одну за другой.
Следует отметить, что между обмоткой и сердечником стоит кусок фанеры — для физического отделения обмотки от стали.
При намотке каждый слой изолируется друг от друга при помощи лакоткани или слюды. Можно изолировать и хлопчатобумажной тканью, если впоследствии пропитывать лаком. Последовательно виток за витком нужно смотать всю вторичную обмотку и посчитать витки.
Сматывать обмотку нужно на какой-нибудь каркас, чтобы не запутать проволоку. Неудобно в данном трансе было наличие обмотки двумя проволоками. Прямо на каркасе нужно нарисовать стрелку намотки обмотки, чтобы не забыть куда мотать. Витков получилось 149. Здесь нельзя поделить проволоку на две равные части и намотать обмотки. Также не стоит наматывать по 74 витка: при небольшом перекосе может не хватить провода для доматывания симметрии. Я наматывал 70 витков, далее отвод средней точки и затем еще 70, а там уже регулировал. Естественно, что каждый слой нужно отделять изоляцией. Изолента для этого не подойдет — температура правления не та.
Чем аккуратнее виток к витку намотать всю обмотку, тем легче будет надеть сердечник на каркас. Если мотать абы как, то на каркас обмотка точно не влезет. Отвод средней точки не разрезается, а продолжается. При отводе обмотка пересекает всю катушки, поэтому этот участок нужно изолировать лентой и продолжить намотку.
Собираем трансформатор как разбирали. Обязательно нужно положить все прокладки. Если все хорошо — включаем трансформатор в сеть. Необходимо добиться равенства плечей обмоток трансформатора. Первая половина обмотки имеет 70 витков, вторую наматываем также 70 витков и собираем трансформатор. Включаем и измеряем. В трансформации участвуют только те обмотки, которые обвивают сердечник. Оставшийся метр провода не влияет на напряжение, поэтому зачищаем его конец и промеряем плечи. Если первое больше, то не разбирая транса через зазоры осторожно протягиваем еще полвитка и измеряем, если же первое меньше, то сматываем по полвитка. Нужно добиться симметрии. Когда симметрия найдена, отрезаем лишнее и припаиваем к контактам. Главное чтобы не сильно гудел. Если шум небольшой, то собираем схему с регулированием. Сеть, диммер, трансформатор. Диммер имеет предохранитель, так что все нормально в плане защиты.
Измеряем осциллографом синусоиду на выходе обмотки. Видно, что в верхних точках проявляется кратковременный провал — это вводит диммер. Диммер открыт на полную.
Цена деления амплитуды 20 В/дел. Итого у нас 60 вольт. Плавно крутим ручку диммера и наблюдаем, как время провала увеличивается.
Время провала увеличивается, в результате амплитуда падает, Здесь уже вольт 50 в пике. Среднее напряжение на половине периода также падает, что и уменьшает напряжение.
При выкручивании диммера на минимальное напряжения оставляет от половины периода лишь небольшой всплеск 40 В. Трансформатор при выкручивании диммера губит все меньше и меньше. При минимальном напряжении транс вообще не губит.
После транса нужно поставить один диодный мост и пару конденсаторов. Диодам все равно что выпрямлять, так что постоянка выходит ровной. Конденсаторы сглаживают все всплески на диодах.
Конденсаторов нужно обязательно два. Если применить один и включить на «+» и «-» диодного моста, то ничего путного относительно нулевой точки не получится.
Сайт Виктора Королева
Простыми словами о ремонте телевизоров и домашней бытовой техники своими руками
Как уменьшить вольтаж трансформатора
Как уменьшить вольтаж на трансформаторе.
В этой статье я расскажу вам, как из трансформатора с выходом 32 В, сделать трансформатор с выходом 12 В. Иными словами — уменьшить вольтаж трансформатора.
Для примера, возьму транс от китайского ч/б телевизора «Jinlipu».
Я думаю, очень многие встречались с ним или подобным.
Итак, для начала нам нужно определить первичную и вторичные обмотки. Чтобы это сделать, нужен обычный омметр. Замеряем сопротивление на выводах трансформатора. На первичной обмотке сопротивление больше, чем на вторичной и составляет, обычно, не менее 85 Ом.
После того, как мы определили эти обмотки, можно приступать к разбору трансформатора . Нужно отделить друг от друга Ш-образные пластины. Для этого нам понадобятся некоторые инструменты, а именно: круглогубцы, плоскогубцы, маленькая отвёрточка для «подцепа» пластин, кусачки, нож.
Чтобы вытащить самую первую пластинку, придётся потрудиться, но потом остальные пойдут, как «по маслу». Работать нужно очень осторожно, так как легко можно порезаться о пластины. Конкретно на этом трансформаторе нам известно, что на выходе у него 32 В. В случае, когда мы этого не знаем, нужно перед разбором обязательно замерить напряжение , чтобы в дальнейшем мы смогли вычислить, сколько витков идёт на 1 В.
Итак, приступим к разбору. Ножом нужно отклеить пластины друг от друга и, при помощи кусачек и круглогубцев, вытаскиваем их из трансформатора. Вот так это выглядит:
После того, как пластины были извлечены, нужно снять с обмоток пластмассовый корпус. Делаем это смело, так как на работу трансформатора это никак не повлияет.
Затем находим на вторичной обмотке доступный для размотки контакт и кусачками «откусываем» его от места спайки. Далее начинаем разматывать обмотку, при этом обязательно считаем количество витков. Чтобы проволока не мешала, её можно наматывать на линейку или что-то подобное. Так как на этом трансформаторе на вторичной обмотке 3 вывода (два крайних и один средний), то логично предположить, что напряжение на среднем выводе равняется 16В, ровно половина от 32В. Разматываем обмотку до среднего контакта, т.е. до половины, и подсчитываем количество витков, которое мы размотали. (Если у трансформатора два вывода на вторичной обмотке, то разматываем «на глаз» до половины, считаем витки при этом, затем отрезаем размотанную проволоку, зачищаем её конец, припаиваем назад к контакту и собираем трансформатор , делая всё то же, что при разборке, только в обратном порядке. После этого нужно опять замерить напряжение, которое у нас получилось после уменьшения витков и высчитываем сколько витков приходится на 1В. Высчитываем так: допустим у вас был трансформатор с напряжением 35В. После того, как вы размотали примерно половину и собрали трансформатор обратно, у вас стало напряжение 18В. Количество витков, которое вы размотали, равняется 105. Значит 105 витков приходится на 17В (35В-18В=17В). Отсюда следует, что на 1В приходится примерно 6,1 витков (105/17=6,176). Теперь, чтобы нам убавить напряжение ещё на 6В (18В-12В=6В), вам нужно размотать примерно 36,6 витков (6,1*6=36,6). Можно округлить эту цифру до 37. Для этого вам нужно опять разобрать трансформатор и проделать эту «процедуру».). В нашем случае, дойдя до половины обмотки, у нас получилось 106 витков. Значит эти 106 витков приходятся на 16В. Вычисляем сколько витков приходится на 1В (106/16=6,625) и отматываем ещё примерно 26,5 витков (16В-12В=4В; 4В*6,625витков=26,5 витков). Затем «откусываем» отмотанную проволоку, зачищаем от лака её конец, залуживаем и припаиваем к контакту на трансформаторе, от которого он был «откусан».
Теперь собираем трансформатор так же, как и разбирали, только в обратном порядке. Не переживайте, если у вас останется одна-две пластинки, главное чтобы они очень плотно «сидели» .Вот что должно получиться:
Остаётся замерить напряжение, которое у нас получилось:
Поздравляю вас, коллеги, всё получилось отлично!
Если что-то не получилось с первого раза, не расстраивайтесь и не сдавайтесь. Только проявляя упорство и терпение, можно чему-то научиться. Если возникнут какие-то вопросы, оставляйте их в комментариях и я обязательно отвечу.
В следующей статье я расскажу, как из этого трансформатора сделать блок питания постоянного тока на 12В.
ДВА ПРОСТЫХ РЕГУЛЯТОРА НАПРЯЖЕНИЯ
Собранный однажды простейший регулятор напряжения на одном транзисторе был предназначен для определённого блока питания и конкретного потребителя, никуда больше его подключать было конечно не нужно, но как всегда наступает момент, когда правильно поступать мы перестаём. Следствием этого являются хлопоты и раздумья как жить-быть дальше и принятие решения восстанавливать сотворённое ранее или продолжать творить.
Схема номер 1
Имелся стабилизированный импульсный блок питания, дающий на выходе напряжение 17 вольт и ток 500 миллиампер. Требовалось периодическое изменение напряжения в пределе 11 – 13 вольт. И общеизвестная схема регулятора напряжения на одном транзисторе с этим прекрасно справлялась. От себя добавил к ней только светодиод индикации да ограничительный резистор. К слову, светодиод здесь это не только «светлячок» сигнализирующий о наличии выходного напряжения. При правильно подобранном номинале ограничительного резистора, даже небольшое изменение выходного напряжения отражается на яркости свечения светодиода, что даёт дополнительную информацию о его повышении или понижении. Напряжение на выходе можно было изменять от 1,3 до 16 вольт.
КТ829 — мощный низкочастотный кремниевый составной транзистор, был установлен на мощный металлический радиатор и казалось, что при необходимости он вполне может выдержать и большую нагрузку, но случилось короткое замыкание в схеме потребителя и он сгорел. Транзистор отличается высоким коэффициентом усиления и применяется в усилителях низкой частоты – видно действительно его место там а не в регуляторах напряжения.
Слева снятые электронные компоненты, справа приготовленные им на замену. Разница по количеству в два наименования, а по качеству схем, бывшей и той, что решено было собрать, она несопоставима. Напрашивается вопрос – «Стоит ли собирать схему с ограниченными возможностями, когда существует более продвинутый вариант «за те же деньги», в прямом и переносном смысле этого изречения?»
Схема номер 2
В новой схеме также присутствует трёхвыводной эл. компонент (но это уже не транзистор) постоянный и переменный резисторы, светодиод со своим ограничителем. Добавлено только два электролитических конденсатора. Обычно на типовых схемах указаны минимальные значения C1 и C2 (С1=0,1 мкФ и С2=1 мкФ) которые необходимы для устойчивой работы стабилизатора. На практике значения емкостей составляют от десятков до сотен микрофарад. Ёмкости должны располагаться как можно ближе к микросхеме. При больших емкостях обязательно условие C1>>C2. Если ёмкость конденсатора на выходе будет превышать ёмкость конденсатора на входе, то возникает ситуация при которой выходное напряжение превышает входное, что приводит к порче микросхемы стабилизатора. Для её исключения устанавливают защитный диод VD1.
У этой схемы уже совсем другие возможности. Входное напряжение от 5 до 40 вольт, выходное 1,2 – 37 вольт. Да, имеется падение напряжения вход – выход равное примерно 3,5 вольтам, однако роз без шипов не бывает. Зато микросхема КР142ЕН12А именуемая линейным регулируемым стабилизатором напряжения имеет неплохую защиту по превышению тока нагрузки и кратковременную защиту от короткого замыкания на выходе. Её рабочая температура до + 70 градусов по Цельсию, работает с внешним делителем напряжения. Выходной ток нагрузки до 1 А при длительной работе и 1,5 А при непродолжительной. Максимально допустимая мощность при работе без теплоотвода 1 Вт, если микросхему установить на радиатор достаточного размера (100 см.кв.) то Р макс. = 10 Вт.
Что получилось
Сам процесс обновлённого монтажа занял времени ни сколько не больше чем предыдущий. При этом получен не простой регулятор напряжения, который подключается к блоку питания стабилизированного напряжения, собранная схема при подключении даже к сетевому понижающему трансформатору с выпрямителем на выходе сама даёт необходимое стабилизированное напряжение. Естественно, что выходное напряжение трансформатора должно соответствовать допустимым параметрам входного напряжения микросхемы КР142ЕН12А. Вместо неё можно использовать и импортный аналог интегральный стабилизатор LM317Т. Автор Babay iz Barnaula.
Форум по обсуждению материала ДВА ПРОСТЫХ РЕГУЛЯТОРА НАПРЯЖЕНИЯ
Подключение и испытание усилительного модуля на транзисторах КТ835 от электрофона "Россия 321 Стерео".
Усилитель мощности звука с двойной термостабилизацией — теория работы схемы и практическое тестирование.
Высококачественный усилитель для электрогитары — полное руководство по сборке и настройке схемы на JFET и LM386.
Инструкция новичкам как научиться паять паяльником — различные провода, платы, микросхемы и другие детали.