Цифровой генератор от 1Hz до 40 МНz, это просто
Цифровой генератор от 1Hz до 40 МНz, это просто.
DDS синтезатор на AD9850, привлекает радиолюбителей своей простотой и возможностями.
Обычно цифровые генераторы частоты, в которых требуемое значение частоты устанавливают с помощью клавиатуры, как правило, выполнены на микроконтроллере, диапазон генерируемых частот ограничен несколькими мегагерцами, а получение точного значения частоты в широких пределах затруднительно. Описываемый в статье генератор тоже содержит микроконтроллер, но использован он только для управления специализированной микросхемой — синтезатором частоты AD9850 . Применение этой микросхемы позволило расширить диапазон генерируемых частот от 0Hz до 40 МНz, в пределах которого можно получить любое значение частоты с точностью 1Hz.
Структурная схема синтезатора AD9850 изображена на рис. 1. Его основа — аккумулятор фазы, формирующий код мгновенной фазы выходного сигнала. Этот код преобразуется в цифровое значение синусоидального сигнала, который с помощью ЦАП превращается в аналоговый и подвергается фильтрации. Компаратор позволяет получить выходной сигнал прямоугольной формы. Его частота fout (в герцах) определяется формулой
Fout — выходная частота, Hz ;
Fin — тактовая частота, Hz ;
∆ – 32-битное значение кода частоты.
Максимальное значение Fout не может превосходить половины тактовой частоты.
Основные технические характеристики AD9850 (при напряжении питания 5В).
2 выходных сигнала
Частота тактового генератора, МНz: 1…125
Максимальный потребляемый ток (при fin=125 МГц), мА 95
Число разрядов ЦАП 10
Максимальный выходной ток ЦАП (при Rset=3,9 кОм), мА 10,24
Максимальная интегральная нелинейность ЦАП, МЗР 1
Компаратор имеет подстройку, переменным резистором R13.
Напряжение на выходе компаратора, В:
минимальное высокого уровня 4,8
максимальное низкого уровня 0,4
Для загрузки данных в микросхеме AD9850 предусмотрены параллельный и последовательный интерфейсы.
В последнем случае данные (слово длиной 40 бит) вводят через ее вход DАТА.
Каждый бит данных сопровождают импульсом положительной полярности на входе синхронизации W_CLK.
После загрузки управляющего слова по импульсу положительной полярности на входе F U _ U D происходит замена параметров генерации новыми..
Принципиальная схема управления генератором изображена на рис. 2.
Управляет синтезатором DD2 микроконтроллер DD1.
Управление происходит с помощью энкодера Sk1 с кнопкой Кн0, и дополнительных кнопок Кн1 – Кн6.
Вращая ручку энкодера вправо или влево, производим изменение частоты на экране ЖКИ прибора, и одновременно получаем это же значение частоты в виде прямоугольника и синуса на выходе схемы.
Кн0 * задает шаг установки частоты с помощью энкодера Sk1 (1Hz, 10Hz, 100Hz, 1kHz, 10kHz, 100kHz, 1MHz, выбор значений по «кольцу» , данный режим работы кнопки Кн0 * актуален только в версии программы 1.0).
Значение выходной частоты выставляется с точностью порядка 1Hz, что достаточно для большинства случаев.
Кнопки Кн1 – Кн6, это кнопки быстрого доступа, с их помощью можно устанавливать определенную частоту генератора одним нажатием кнопки.
Каждая кнопка Кн1 – Кн6, это есть ячейка с памятью.
В них прописывается значение частоты следующим образом: сначала устанавливаем нужную нам частоту на экране ЖКИ с помощью энкодера Sk1,
нажимаем и длительно удерживаем Кн0 , на экране появится надпись «record» , не отпуская Кн0, нажимаем любую кнопку Кн1 – Кн6 нужной нам ячейки, на экране это будет отражено надписью «is made», запись в ячейку произведена.
Введенные в ячейки значения частоты сохраняются в энергонезависимой памяти микроконтроллера.
А так же еще следует знать, что при старте МК всегда считывается установка частоты с ячейки Кн1.
А значение, записанное в ячейке кнопки Кн6, управляет выходом РD7(13 ножка МК), которое в свою очередь по цепочке D1 R1 отключает генерацию прямоугольного сигнала генератора AD9850.
К сожалению, DDS выдаёт побочные сигналы, уровень которых зависит от тактовой и выходной частот (при частоте более 5MHz (или любое значение частоты, внесенное в ячейку Кн6) по цепочке D1 R1 можно с МК подать лог . 1 , при этом не будут, вносится искажения в синусоидальный сигнал генератора, это в случае если это требуется пользователю прибора, в противном случае цепочку из деталей D1 R1 не устанавливать).
FUSE:
Программа написана для работы МК на тактовой частоте 8 МГц. МК тактируется от внутреннего RS осциллятора.
Примеры работы генератора, в фотографиях.
![]() | ![]() | ![]() |
![]() | ![]() | ![]() |
Небольшое видео, работы программы управления и генератора, в разных режимах управления частотой.
Простой генератор ШИМ-сигнала
Широтно-импульсно модулированный сигнал очень часто применяется в электронике для передачи информации, регулировки мощности или формирования постоянного напряжения произвольного уровня. В этой статье описано устройство на операционном усилителе, размером 20х20мм из 15 элементов, которое генерирует ШИМ-сигнал.
Формирование ШИМ-сигнала
ШИМ-сигнал (PWM) представляет собой последовательность импульсов, частота которых неизменна, а модулируется длительность импульсов. Большинство микроконтроллеров легко справляются с этой задачей, но что делать если нет желания программировать и использовать такое мощное средство для такой простой задачи? В этом случае можно использовать дискретные элементы.
Для начала необходимо сформировать последовательность пилообразных импульсов и подать ее на вход компаратора. На второй вход компаратора подается модулирующий сигнал, например, напряжение с переменного резистора. Если напряжение генератора выше напряжения на втором входе — на выходе напряжение близко к напряжению питания. Если напряжение генератора ниже — на выходе ноль.
На рисунке Uк — напряжение команды (постоянный уровень, заданный переменным резистором), Uген — напряжение генератора, UPWM — ШИМ-сигнал.
Схема
Все эти задачи можно легко выполнить при помощи двух операционных усилителей так как показано на схеме.
Схема генератора ШИМ
В схеме применена микросхема LM358N, которая использует однополярное питание и содержит два канала в одном корпусе SO8.
Печатная плата
Все элементы, кроме резистора R3, предназначены для поверхностного монтажа и располагаются на плате с минимальным размером. R3 расположен на обратной стороне платы. Генераторные схемы очень капризны с точки зрения трассировки печатных плат. Если изменить топологию платы нельзя гарантировать ее работоспособность. Первая версия платы генерировала пилообразное напряжение с очень низкой амплитудой и ее было невозможно использовать.
Плата генератора ШИМ-сигнала
Сборка и работа схемы
Сама плата очень маленькая — 20х20 мм и легко изготавливается методом ЛУТ. Она лишь немного больше переменного резистора, изменяющего скважность сигнала.
Плата генератора ШИМ в сборе
Технические характеристики
- напряжение питания, 5-15В
- диапазон изменения скважности, от 1 до бесконечности
- рабочая частота, 500Гц
- потребляемый ток, не более, 2мА
Рабочая частота определяется конденсатором C1. Для снижения частоты можно увеличить его емкость и наоборот.
Список элементов
- ИМС LM358N в корпусе SO8 (DA1), 1 шт.
- Резисторы 20кОм в корпусе 0805 (R1,R2,R4-R6), 5 шт.
- Резисторы 10кОм в корпусе 0805 (R7,R8), 2 шт.
- Любой переменный резистор с шагом выводов 5мм и сопротивлением 50кОм
- Конденсаторы 0,1мкФ в корпусе 0805 (C1,C2,C4), 3шт.
- Конденсатор танталовый 47мкФ, 16В, типоразмера С, T491C476K016AT (C3), 1шт.
Видео работы
Работает плата достаточно стабильно. На видео видно, как меняется яркость светодиода. Неудобство только в том, что используется лишь половина диапазона резистора R3. То есть в первой и последней четверти положения вала напряжение остается без изменения.
Генератор импульсов на транзисторах с регулировкой частоты своими руками
1. Купить готовый генератор синуса для лечебных катушек Мишина. По Украине любой транспортной компанией. В Россию и в другие страны отправка почтой. Далее
2. К174ГФ2 (XR2206) + TDA7052A
- XR2206 — генератор синусоиды, питание: 10. 26 Вольт. Амплитуда выхода синусоиды 60 мВ.
- TDA705 2 A — усилитель, питание 4.5. 18 В, мощность 1 Вт, до 300 кГц. (слабенькая)
3. К174ГФ2 (XR2206) + TDA705 6 A (TDA705 6 B)
Генератор синусоиды на микросхеме К174ГФ2 (XR2206) и усилитель на TDA7056A(B) — минимум обвязки, питание 12 вольт. TDA7056A(B) размещаем на радиаторе. Питать можно до 18 вольт. Есть искажения синусоиды. TDA7056A (B) 4.5-18 В, 3.5 Вт, до 300 кГц. Чем выше частота тем слабей усиление и больше нагрев микросхемы. TDA7056A(B) обязательно размещать на радиаторе.
4. К174ГФ2 (XR2206) + TDA7495 (2 X 11 Вт — до 600 кГц )
5. К174ГФ2 (XR2206) + LM1875T или TDA7265 и т.д.
6. К174ГФ2 (XR2206) + TCA0372DP1G
Генератор синусоиды на микросхеме К174ГФ2 ( XR2206 ) и усилитель TCA0372DP1G. Если двух полярное питание, то понадобиться минимум обвязки.
7. Генератор синуса + усилитель, одна из микросхем: AD815, LT1210, LT1795, THS6012, AD8016, AD8392A — мощные ОУ.
Предусилители (единтичные аналоги): КР1040УД1, КР1053УД2, КР1401УД5, TL072, LM358 (LM158,LM258), GL358, NE532, OP295, OP290, OP221, OPA2237, TA75358P, UPC1251C, UPC358C и т.д.
8. К174ГФ2 (XR2206) + усилитель на транзисторах, класс А
Идеальный синус на усилителе класса А. Автор: Денис Горелочкин. P1 — подстройка частоты для нашего диапазона 280-380 кГц. R4 — амплитуда синусоиды. Минус схемы — это большой нагрев и большие токи потребления.
8.1 К174ГФ2 (XR2206) + усилитель на транзисторах. Маломощняя упрощённая схема. Минусы — искажения синусоиды. На низкодобротных катушках малые токи.
9. SG3525A — регулировка мощности регулируется питающим напряжением (автор Денис Горелочкин). Минусы — присутствуют «иголки» на синусоиде. Уходит частота при нагреве.
9.1 SG3525A — упрощённая маломощная схема (автор Денис Горелочкин). Уходит частота при нагреве.
10. К561ЛН2 — генератор синусоиды, R6, С3 — регулировка частоты
11. К176ЛА7 — генератор синусоиды, R1 — регулировка симметрии, R6, С3 — регулировка частоты, R7 — качество синусоиды
12. 555 — генератор синусоиды
15. Автогенераторы на К561ЛА7
14. Автоген от Дениса Горелочкина den737 (рисунки здесь)
Запускается легко как TDA7056А (на TDA7056В хуже, но зависит от схемы). Следует делать компактный монтаж и ферритовое кольцо располагать ближе к ногам 3 и 6 TDA7056. Питание не поднимать выше 12 В (зависит от подключённой катушки — её добротности).
Для схемы с тремя конднесаторами 47 нано, чтоб уменьшить потребление нужно увеличить индуктивность до 30-35 мкГн, а номинал конденсатора, который возле него, снизить до 10нф (при 300кГц). Для 285кГц — 11нф. 1нф добавляет, примерно, 40ма к общему.
детектор (на Сопротивление 1 Ом) на маленьком вольтметре (как раньше были на магнитофонах) и можно контролировать прибор во время работы.
Схема с общим эмиттером
Две простых схемки, если есть промышленные генераторы. Питание от 12 до 24 вольт. Из минусов — искажения до 5%
Мини-лаборатория юного радиолюбителя. Функциональный генератор
Эпиграф.
«Когда собаке не фиг делать, она… песенки поет»
Признаться, я очень часто отвлекаюсь на всякие «полезно-бесполезные» поделки (это я про свое хобби: Ардуино, радиоэлектроника), которые не занимают много времени. И те, кто со мной хорошо знаком знают об этой моей особенности. Причем, я как быстро «вспыхиваю», так же быстро могу потерять всяческий интерес к тому или иному проекту. Копошась в интернете могу назаказывать в Китае кучу всяких интересных модулей, а получив их благополучно скинуть в коробку, зачастую даже и не распечатав пакетик 🙂 Потому что меня уже заинтересовало что-то другое. Я знаю, что это не хорошо, но ничего поделать не могу.
Как-то просматривая китайские электронные конструкторы на моей любимой (как иногда пишут: ЛЕГЕНДАРНОЙ) микросхеме NE555 выделил для себя два интересных набора для самостоятельной сборки:
Слева — генератор прямоугольных импульсов, с возможностью установки частоты и справа — функциональный генератор сигналов на выбор: меандр, синус, пила. Но… только на частоте 1 kHz.
Что же это такое — "Функциональный генератор"? Это устройство, которое имеет возможность формирования сигналов различных форм (как правило, более 3-х наиболее типичных сигналов: синус, прямоугольник, треугольник/пила). Такой прибор просто необходим в практике радиолюбителя для настройки различных радиолюбительских схем – усилителей, цифровых устройств, фильтров и так далее.
Как говориться: «глазки заблестели, ручки затряслись», ХОЧУ. Точнее, ХОЧУ СДЕЛАТЬ. Но непросто сделать/скопировать, а объединить два этих набора в одной поделке.
Изучив внимательно китайскую схему можно отметить, что неспроста китайцы клепают генератор только на одну частоту (1 kHz) — фильтры рассчитаны именно для этой частоты. Так что «ХАЛЯВЫ ТУТ НЕТ»: только МЕАНДР будет на всех частотах. Остальные сигналы (синус, треугольник и интегратор) — только при установке частоты 1 kHz. Меня вполне такой расклад устраивает. Далее несколько часов напряженной работы и «усовершенствованная» схема:
Как вы смели заметить, добавлен блок переключения частот и подстроечный резистор (100 kOm) для точной подстройки частоты. Следом печатная плата (не без гордости отмечаю, что ее размер буквально на 10 мм больше, чем у китайского варианта). Есть пару «плюшек»: все детали — выводные (значит, легко паять новичкам), два варианта подключения питания, два варианта подключения выходного сигнала.
Ну и далее, как обычно «Лутим-травим-паяем. ». Не буду на этом заострять внимание. Вот как выглядит готовое устройство:
Заработало сразу, да и чему тут не заработать.
Просто приведу результаты контрольных проверок:
Синус. Похож, очень даже.
Пила. Ну это… не идеально, но сойдет.
Треугольник. Нормально.
А вот форма меандра вызывает небольшое недоумение: горизонтальные линии слегка «не параллельны». Однако для большинства цифровых схем — вполне сойдет. Тем более, что мне не довелось увидеть как работает «китайский оригинал» 🙂