Setting96.ru

Строительный журнал
15 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Радиосхемы Схемы электрические принципиальные

Радиосхемы для компьютера

Как-то в нашей конференции проскочило пожелание читателей увидеть статью, в которой бы описывалась схема регулировки оборотов корпусного вентилятора в зависимости от температуры.

Как же можно решить данную проблему? Порывшись в личных архивах, нашел статью об устройствах для регулировки оборотов дополнительных корпусных ветродуев в зависимости от температуры внутри «ящика». Она вышла на страницах данного журнала еще в 2001-м году (в #37) и называлась «Сквозняк по заказу». Но инженерная мысль не стоит на месте. В этот раз нам удалось изготовить новый регулятор, на порядок лучше прежнего, используя сочетание разных схем, которые, как оказа-

лось, прекрасно работают вместе. Внимание: при изготовлении и эксплуатации описываемой схемы будьте аккуратны и соблюдайте меры предосторожности при работе с паяльником! Тщательно проверяйте монтаж устройства перед подключением к материнской плате!

Что, где и как происходит?

Многие думают: если есть возможность «поддавать газу» в автоматическом режиме, почему бы не делать именно так? Да, такие устройства в природе есть, но цена их при этом достаточно велика (для большинства пользователей). А что, если собрать подобный девайс самому? Конечно, добавив при этом красивую разноцветную индикацию режимов работы вентилятора

Пусть логика работы устройства будет такая непосредственно после включения на вентиляторы начинает подаваться напряжение около 6 вольт (с кратковременным повышением в самый начальный момент до 12 вольт — для устойчивого запуска), а затем при повышении температуры оно повысится до максимального значения 12 вольт. Когда температура понизится, •напряжение на выходе регулятора снова уменьшится до 6 вольт и вентилятора практически не будет слышно. В принципе, нижний порог напряжения (6 вольт) можно будет потом изменить по желанию в зависимости от шумности вентилятора. Поэтому сочетаем подстроечный резистор (в регуляторе напряжения, подаваемого на «вертушку», он регулирует начальную скорость вращения ротора) с электронным переключателем режимов.

Первая составная часть девайса — «термопереключатель» для вентилятора. Главное в ней — схема на транзисторах VT1 и VТ2. Термодатчик — четыре или опять параллельно соединенных германиевых диодов типа Д9Б в обратном включении. В исходном состоянии сопротивление термодатчика велико, транзистор VT1 закрыт, VТ2 открыт и напряжение на его коллекторе мало. Диод /D6 заперт обратным напряжением, ток через его цепь не протекает. При повышении температуры сопротивление термодатчика понижается (возрастает обратный ток диодов), и при дальнейшем возрастании напряжения на базе транзистор VT1 открывается, VТ2 закрывается. Напряжение на коллекторе VТ2 увеличивается до 12 вольт. Через открывшийся диод VD6 и резистор R8 начинает протекать ток, сильнее открывая транзистор /ТЗ и повышая напряжение на выходе регулятора до максимума. Резистором R1 устанавливают порог начала срабатывания схемы.

регулировка скорости вращения кулеров схема

Вторая часть схемы — немного переделанный регулятор напряжения. В исходном состоянии спряжение на базу транзистора подается со стабилитрона VD7 и диода VD8. Напряжение на выходе регулятора напряжения будет примерно 6 вольт (если движок подстроечного резистора находится в самом нижнем положении по схеме). Пока на выходе триггера уровень напряжения низкий, диод /D6 закрыт, напряжение на базу транзистора /ТЗ поступает через открытый диод VD9 и резистор R9. Когда температура воздуха внутри корпуса возрастет и сработает триггер Шмитта, напряжение на базу регулирующего транзистора будет поступать уже с выхода «переключателя» через цепочку VD6, R8. Таким образом, напряжение на выходе регулятора будет меняться при достижении пороговой температуры от +6 до +11,5 вольт (в зависимости от типа используемого в регуляторе транзистора, максимальное выходное напряжение может быть от 11 до 11,5 вольт).

Конечно, схему можно сделать и более простой, но главное здесь — сама идея, а ее конкретное воплощение — это личное дело изготовителя.

Питание на схему подается через разъем Х1, подключаемый к штырькам на материнской плате. Самому его сделать нетрудно, нужно только найти какую-нибудь китайскую магнитолу и внимательно посмотреть на ее монтаж: подобным разъемом часто подключаются провода на вход усилителя. Если ничего такого найти не удалось, можно поискать платы от отечественной аппаратуры и найти на этих платах гнездовые части разъемов с таким же шагом контактов (как правило, шаг контактов у них стандартный), затем отпилить от него часть с тремя контактами — дальше все понятно и без пояснений Разъем Х2 (со штырями) для подключения к вентилятору также можно изготовить, разобрав нерабочий аппарат. Такими разъемами жгуты проводов подключаются к платам, например, в телевизорах (типа ЗУСЦТ). Нужно только отпилить от разъема часть с тремя штырями и припаять к этим штырькам провода от схемы Желательно при этом соблюдать цветовую маркировку: белый — провод от таходатчика, красный — «+» питания, черный -«общий». Как именно провода подключаются к разъему, можно посмотреть на вентиляторе.

Индикаторные светодиоды применяются следующие: «МIN» — красный, «МАХ» — зеленый, «WORK» — желтый.

Подстроечный резистор на 47 кОм можно заменить на другой, большего сопротивления (изменив при этом величину сопротивления резистора R2). Вместо германиевых диодов можно попробовать применить терморезистор (примерно на 50-100 кОм), а потом помучиться с подбором сопротивлений Подстроечный резистор во второй части схемы можно заменить переменным, найти красивую ручку и прикрепить его к крышке, рядом с платой устройства. Тогда обороты вентиляторов можно будет регулировать вручную, а при повышении температуры внутрикорпусная вентиляция заработает в полную силу независимо от положения ручки регулятора.

Германиевые диоды имеют сильную зависимость обратного тока от температуры, именно эта их особенность и используется в данной схеме. Чем меньше они по размерам, тем быстрее схема будет реагировать на повышение температуры внутри корпуса. С другой стороны, сверхминиатюрную деталь будет легче повредить. Количество диодов можно изменять (поэтому и пришлось добавить еще один), но тогда придется, соответственно, корректировать величины последовательно соединенных с ними сопротивлений, если датчик не будет срабатывать при заданной температуре (это вариант скорее для продвинутых мастеров).

При настройке устройства подогревать диоды можно паяльником, ненадолго помещая его жало рядом с корпусами диодов (но не касаясь их!). Окончательную регулировку температурного порога нужно производить после установки датчика в корпус, при этом боковые стенки корпуса должны быть закрыты (при настройке крышку отсека с укрепленной на ней платой не вдвигайте на место полностью, чтобы оставалась возможность покрутить подстроечный резистор).

регулировка скорости вращения кулеров

Регулирующий транзистор может быть типа КТ815, КТ817 с любым буквенным индексом. Его лучше прикрутить к металлической пластинке толщиной 2-3 мм и площадью 5-6 см2, при этом нельзя допускать соприкосновения этого радиатора с корпусом компьютера или «общим» проводом схемы. Величину напряжения на выходе регулятора в режиме «полного газа» устанавливают подбором величины сопротивления резистора R8 (его можно убрать совсем). Маломощные транзисторы — любые кремниевые, но, возможно, в этом случае придется подбирать регулировочные сопротивления.

Индикаторы напряжения конструктивно очень просты. Работу их здесь подробно разбирать не будем, только напомню, что НL1 — индикатор минимального напряжения на выходе регулятора, НL2 — индикатор максимального напряжения, НL3 — индикатор исправности регулятора (он должен все время светиться во время работы при исправном регуляторе напряжения). Если вы захотите доработать данную схему, скажем, установить выключатель, который будет соединять базу транзистора с общим проводом, останавливая при этом вентилятор, то потребуется индикатор наличия напряжения на выходе (правда, в этом случае

Читать еще:  Синхронизируем htc titan с компьютером

вентилятор необходимо почаще смазывать для уверенного запуска при минимальном подводимом напряжении).

В результате получилось устройство, изменяющее обороты одного из корпусных вентиляторов от 1700-1800 (при небольшой температуре воздуха в корпусе) до 2800 и более оборотов в минуту в случае большой нагрузки (игр или других тяжелых приложений), вызывающей повышение температуры воздуха в корпусе примерно до 35°С (по данным программы МВРгоЬе). Обороты вентилятора контролируются без сбоев. Используемый вентилятор — Zalman ZМ-F1. Теперь, после проверки, можно собрать еще один такой девайс и подключить его к другому разъему на плате — пусть мониторится на здоровье!

Кое-что о сборке:

Для монтажа данного девайса не требуется лишних материальных затрат — хорошо подходит крышка пятидюймового отсека. После сборки системного блока, как правило, остается хотя бы одна свободная заглушка, которая в лучшем случае валяется среди запчастей, в худшем —

просто выбрасывается. А если вы ее испортите в процессе работы — так она все равно была запасной, и с крышкой, которая в данный момент установлена в корпусе, можно будет поработать дальше, только более аккуратно, с учетом прошлых ошибок. Можно, конечно, использовать и трехдюймовую крышку — кому как нравится.

При выборе типа светодиодов для индикаторов нужно учитывать и то, как выглядят индикаторы на вашем корпусе, чтобы не нарушать единство стиля. Как вы думаете, хорошо ли будут выглядеть здоровенные круглые светодиоды в крышке «пятидюй-мовки», в то время как индикаторы на корпусе небольшие и прямоугольные? Вот и я думаю, что это будет не очень эстетично («зато дешево, удобно и практично. » — классика, однако. ). Конечно, круглые отверстия проделывать будет проще, но и выглядят они не так стильно. В нашем случае дизайн пробного экземпляра устройства минималистический.

Теперь немного информации о монтаже электрической части. Печатную плату для данного устройства целесообразно разрабатывать в том случае, если вы хотите заняться мелкосерийным производством таких девайсов. А для опытных образцов достаточно будет макетной платы. Если монтаж проведен аккуратно и качественно, устройство будет работать годами, пока не надоест своим присутствием. Макетная плата изготавливается прорезанием канавок в слое фольги до текстолита, так, чтобы образовались изолированные друг от друга квадратики со стороной примерно в 1 см. К этим квадратикам и припаиваются выводы деталей. При необходимости детали можно будет легко отпаять и переместить в другое место (если начальная компоновка окажется неудачной). Если площадки расположены далеко друг от друга, соединяйте их отрезками многожильного изолированного провода. Печатную плату с деталями можно изнутри привинтить к нижней кромке крышки. Обратите внимание, что винты крепления должны быть с «потайной» головкой, чтобы они не торчали и не мешали вставлять крышку на место. Только вот незадача — нижняя кромка крышки весьма тонкая, поэтому будьте внимательны и осторожны. В крайнем случае прикрепите плату к крышке взятым напрокат клеевым пистолетом (можно обойтись и без него, поместив плату на нужное место и затем расплавив кусок клея паяльником). Если такого клея в пределах досягаемости нет, воспользуйтесь клеем «Момент». Плату постарайтесь сделать не очень большой, чтобы в будущем рядом с ней можно было разместить плату другого такого же регулятора. Светодиоды в отверстиях можно крепить также с помощью клеевого пистолета (кстати, во многих корпусах так и сделано). С наружной стороны крышки рядом со светодиодами для прикола можно попробовать сделать какие-нибудь условные обозначения. Раньше для этого удобно было использовать переводные изображения, но сейчас таких радиолюбительских шрифтов что-то не видно. Так что если нет навыков аккуратного написания букв — лучше не портите свою работу. Хотя крупная надпись — что-нибудь вроде «SmartFan Ltd» — смотрелась бы неплохо (наверное).

Датчик необходимо разместить в верхней части корпуса, причем так, чтобы избежать замыкания его выводов с металлической поверхностью и попадания его под струю воздуха от вентилятора. Главное, чтобы в дальнейшем он не отлепился от своего посадочного места и его длинные провода не попали в жужжащую крыльчатку вентилятора на процессоре.

Разумеется, первоначальное подключение лучше производить к какому-нибудь внешнему блоку питания 12 вольт, чтобы при возможных ошибках в монтаже избежать больших материальных потерь. (Например, если будет перепутана полярность подключения диодного датчика температуры — транзистор VТ1 мгновенно сгорит!)

При изготовлении данного девайса помните, что от аккуратности проделывания отверстий в крышке (монтажа деталей на плате снаружи все равно не видно, если его специально не демонстрировать) напрямую будет зависеть количество восторга, которое проявят окружающие вас друзья-моддеры. А уже от реального количества восторга будет зависеть теоретически возможное количество пива, которое пообещают вам товарищи за изготовление аналогичного устройства для них.

Умелых вам рук и прохладных корпусов!

Р.З. Вообще-то, описываемый прибор сейчас работает только в «тихом» режиме. А почему? Здесь целая история. Возникли неприятности с блоком питания, и пришлось его менять. Попутно нужно было решить проблему с вентилятором БП: слишком уж он шумел. Когда блок питания был заменен, новинка так понравилась, что о ней была написана статья «Молчание — золото». Вентилятор в новом БП шумит гораздо меньше, и, что самое важное, температура внутри корпуса снизилась градусов на пять. Теперь она не достигает пороговой величины, на которую настроен описываемый здесь регулятор оборотов. Осталось подождать наступления лета — будет жарче, тогда вентилятор снова будет увеличивать обороты. А пока насладимся тишиной.

Схема регулировки оборотов вентилятора для компьютера

Довольно простой вариант автоматического регулятора оборотов вентилятора для компьютера с датчиком, выполненном на транзисторе.
Именно на транзисторе, потому что: во-первых — полупроводниковые датчики более чувствительны и надёжны, во-вторых — найти терморезистор необходимого сопротивления довольно проблематично.
Это не самая простая схема такого девайса, есть и проще, но гораздо менее надежные и мнее чувствительные.
Схема подходит под напряжение 12 В. Транзисторы в них можно легко заменить на аналогичные, КТ315 вообще можно заменить на практически любой другой транзистор n-p-n перехода, но при этом, возможно, понадобиться подобрать резистор R3 к нему, если при использовании другого транзистора R3 будет сильно греться, то его можно заменить на другой резистор сопротивлением: 150-200 Ом.

Элемент Номинал
R122 КОм
R25 КОм
R3100 Ом
C133 мкФ
C2100 мкФ
VT1КТ315
VT2КТ816

Схема очень проста и собирается минут за 10, размером с четверть спичечного коробка.

КТ315 выполняет роль датчика, он устанавливается между ребер радиатора.

Схема настраивается следующим образом: резистор R2 устанавливается в так, чтобы подключенный к схеме вентилятор остановился, затем датчик (VT1 — КТ315) надо нагреть до уровня комнатной температуры, можно подержать его в руке пару минут, далее начинаем крутить R2 до тех пор, пока вентилятор не начнет крутиться.
После этого мложно устанавливать схему, но немного отточить настройку всё же надо. Необходимо еще немного подстроить резистор R2, чтобы вентилятор гарантированно стартовал при включении компьютера.

Таким образом при температору 25-30 градусов, вентилятор работает на минимальных оборотах, а при температуре радиатора, а соответственно и датчика, 50-60 градусов вентилятор крутится на полную мощность.

Как я уже сказал, транзистор КТ315 можно заменить на практически любой маломощный кремниевый транзистор, неплохо было бы использовать транзистор с металлическим корпусом или, максимально сточить корпус транзистора, чтобы увеличить его чувствительность.

Читать еще:  Регулировка яркости с помощью клавиатуры ноутбука

VT2 (КТ816) тоже можно заменить на аналогичный транзистор более мощный, но не используйте составные транзисторы и транзисторы со встроенным сопротивлением.

Данный терморегулятор эффективен в том случае, когда в системном блоке хорошая вентиляция, ведь а противном случае тот же процессорный кулер будет гонять горячий воздух и разница в температурах при высокой нагрузке и при простое будет небольшая и терморегулятор будет просто бесполезен.

Самостоятельное изготовление регулятора оборотов электродвигателя

Регулятор оборотов электродвигателя

Регулятор оборотов в двигателе нужен для совершения плавного разгона и торможения. Широкое распространение получили такие приборы в современной промышленности. Благодаря им происходит измерение скорости движения в конвейере, на различных устройствах, а также при вращении вентилятора. Двигатели с производительностью на 12 Вольт применяются в целых системах управления и в автомобилях.

Устройство системы

Коллекторный тип двигателя состоит главным образом из ротора, статора, а также щёток и тахогенератора.

  1. Ротор — это часть вращения, статор — это внешний по типу магнит.
  2. Щётки, которые произведены из графита — это главная часть скользящего контакта, через которую на вращающийся якорь и стоит подавать напряжение.
  3. Тахогенератор —это устройство, которое производит слежку за характеристикой вращения прибора. Если происходит нарушение в размеренности процесса вращения, то он корректирует поступающий в двигатель уровень напряжения, тем самым делая его наиболее плавным и медленным.
  4. Статор. Такая деталь может включать в себя не один магнит, а, к примеру, две пары полюсов. Вместе с этим на месте статических магнитов здесь будут находиться катушки электромагнитов. Совершать работу такое устройство способно как от постоянного тока, так и от переменного.

Схема регулятора оборотов коллекторного двигателя

Регулятор оборотов коллекторного двигателя

В виде регуляторов оборотов электродвигателей 220 В и 380 В применяются особые частотные преобразователи. Такие устройства относят к высокотехнологическим, они и помогают совершить кардинальное преобразование характеристики тока (форму сигнала, а также частоту). В их комплектации имеются мощные полупроводниковые транзисторы, а также широтно-импульсный модулятор. Весь процесс осуществления работы устройства происходит с помощью управления специальным блоком на микроконтроллере. Изменение скорости во вращении ротора двигателей происходит довольно медленно.

Именно по этой причине частотные преобразователи применяются в нагруженных устройствах. Чем медленнее будет происходить процесс разгона, тем меньшая нагрузка будет совершена на редуктор, а также конвейер. Во всех частотниках можно найти несколько степеней защиты: по нагрузке, току, напряжению и другим показателям.

Некоторые модели частотных преобразователей совершают питание от однофазового напряжения (оно будет доходить до 220 Вольт), создают из него трехфазовое. Это помогает совершить подключение асинхронного мотора в домашних условиях без применения особо сложных схем и конструкций. При этом потребитель сможет не потерять мощность во время работы с таким прибором.

Зачем используют такой прибор-регулятор

Если говорить про двигатели регуляторов, то обороты нужны:

Как подключить регулятор оборотов

  1. Для существенной экономии электроэнергии. Так, не любому механизму нужно много энергии для выполнения работы вращения мотора, в некоторых случаях можно уменьшить вращение на 20−30 процентов, что поможет значительно сократить расходы на электроэнергию сразу в несколько раз.
  2. Для защиты всех механизмов, а также электронных типов цепей. При помощи преобразовательной частоты можно осуществлять определённый контроль за общей температурой, давлением, а также другими показателями прибора. В случае когда двигатель работает в виде определённого насоса, то в ёмкости, в которую совершается накачка воздуха либо жидкости, стоит вводить определённый датчик давления. Во время достижения максимальной отметки мотор попросту автоматически закончит свою работу.
  3. Для процесса плавного запуска. Нет особой необходимости применять дополнительные электронные виды оборудования — все можно осуществить при помощи изменения в настройках частотного преобразователя.
  4. Для снижения уровня расходов на обслуживание устройств. С помощью таких регуляторов оборотов в двигателях 220 В можно значительно уменьшить возможность выхода из строя приборов, а также отдельных типов механизмов.

Схемы, по которым происходит создание частотных преобразователей в электродвигателе, широко используются в большинстве бытовых устройств. Такую систему можно найти в источниках беспроводного питания, сварочных аппаратах, зарядках телефона, блоках питания персонального компьютера и ноутбука, стабилизаторах напряжения, блоках розжига ламп для подсветки современных мониторов, а также ЖК-телевизоров.

Регулятор оборотов электродвигателя 220в

Его можно изготовить совершенно самостоятельно, но для этого нужно будет изучить все возможные технические особенности прибора. По конструкции можно выделить сразу несколько разновидностей главных деталей. А именно:

  1. Сам электродвигатель.
  2. Микроконтроллерная система управления блока преобразования.
  3. Привод и механические детали, которые связаны с работой системы.

Самодельный регулятор оборотов электродвигателя

Перед самым началом запуска устройства, после подачи определённого напряжения на обмотки, начинается процесс вращения двигателя с максимальным показателем мощности. Именно такая особенность и будет отличать асинхронные устройства от остальных видов. Ко всему прочему происходит прибавление нагрузки от механизмов, которые приводят прибор в движение. В конечном счёте на начальном этапе работы устройства мощность, а также потребляемый ток лишь возрастают до максимальной отметки.

В это время происходит процесс выделения наибольшего количества тепла. Происходит перегрев в обмотках, а также в проводах. Использование частичного преобразования поможет не допустить этого. Если произвести установку плавного пуска, то до максимальной отметки скорости (которая также может регулироваться оборудованием и может быть не 1500 оборотов за минуту, а всего лишь 1000) двигатель начнёт разгоняться не в первый момент работы, а на протяжении последующих 10 секунд (при этом на каждую секунду устройство будет прибавлять по 100−150 оборотов). В это время процесс нагрузки на все механизмы и провода начинает уменьшаться в несколько раз.

Как сделать регулятор своими руками

Можно совершенно самостоятельно создать регулятор оборотов электродвигателя около 12 В. Для этого стоит использовать переключатель сразу нескольких положений, а также специальный проволочный резистор. При помощи последнего происходит изменение уровня напряжения питания (а вместе с этим и показателя частоты вращения). Такие же системы можно применять и для совершения асинхронных движений, но они будут менее эффективными.

Ещё много лет назад широко использовались механические регуляторы — они были построены на основе шестеренчатых приводов или же их вариаторов. Но такие устройства считались не очень надёжными. Электронные средства показывали себя в несколько раз лучше, так как они были не такими большими и позволяли совершать настройку более тонкого привода.

Для того чтобы создать регулятор вращения электродвигателя, стоит использовать сразу несколько устройств, которые можно либо купить в любом строительном магазине, либо снять со старых инвенторных устройств. Чтобы совершить процесс регулировки, стоит включить специальную схему переменного резистора. С его помощью происходит процесс изменения амплитуды входящего на резистор сигнала.

Внедрение системы управления

Подключение устройств к регулятору скорости вращения

Чтобы значительно улучшить характеристику даже самого простого оборудования, стоит в схему регулятора оборотов двигателя подключить микроконтроллерное управление. Для этого стоит выбрать тот процессор, в котором есть подходящее количество входов и выходов соответственно: для совершения подключения датчиков, кнопок, а также специальных электронных ключей.

Для осуществления экспериментов стоит использовать особенный микроконтроллер AtMega 128 — это наиболее простой в применении и широко используемый контроллер. В свободном использовании можно найти большое число схем с его применением. Чтобы устройство совершало правильную работу, в него стоит записать определённый алгоритм действий — отклики на определённые движения. К примеру, при достижении температуры в 60 градусов Цельсия (замер будет отмечаться на графике самого устройства), должно произойти автоматическое отключение работы устройства.

Читать еще:  1с розница синхронизация не работает

Регулировка работы

Теперь стоит поговорить о том, как можно осуществить регулировку оборотов в коллекторном двигателе. В связи с тем, что общая скорость вращения мотора может напрямую зависеть от величины подаваемого уровня напряжения, для этого вполне пригодны совершенно любые системы для регулировки, которые могут осуществлять такую функцию.

Стоит перечислить несколько разновидностей приборов:

  1. Лабораторные автотрансформеры (ЛАТР).
  2. Заводские платы регулировки, которые применяются в бытовых устройствах (можно взять даже те, которые используются в пылесосах, миксерах).
  3. Кнопки, которые применяются в конструкции электроинструментов.
  4. Бытовые разновидности регуляторов, которые оснащены особым плавным действием.

Как отрегулировать обороты электродвигателя

Но при этом все такие способы имеют определённый изъян. Совместно с процессами уменьшения оборотов уменьшается и общая мощность работы мотора. Иногда его можно остановить, даже просто дотронувшись рукой. В некоторых случаях это может быть вполне нормальным, но по большей части это считается серьёзной проблемой.

Наиболее приемлемым вариантом станет выполнение функции регулировки оборотов при помощи применения тахогенератора.

Его чаще всего устанавливают на заводе. Во время отклонения скорости вращения моторов через симистры в моторе будет происходить передача уже откорректированного электропитания, сопутствующего нужной скорости вращения. Если в такую ёмкость будет встроена регулировка вращения самого мотора, то мощность не будет потеряна.

Как же это выглядит в виде конструкции? Больше всего используется именно реостатная регулировка процесса вращения, которая создана на основе применения полупроводника.

В первом случае речь пойдёт о переменном сопротивлении с использованием механического процесса регулировки. Она будет последовательно подключена к коллекторному электродвигателю. Недостатком в этом случае станет дополнительное выделение некоторого количества тепла и дополнительная трата ресурса всего аккумулятора. Во время такой регулировки происходит общая потеря мощности в процессе совершения вращения мотора. Он считается наиболее экономичным вариантом. Не используется для довольно мощных моторов по вышеуказанным причинам.

Во втором случае во время применения полупроводников происходит процесс управления мотором при помощи подачи определённого числа импульсов. Схема способна совершать изменение длительности таких импульсов, что, в свою очередь, будет изменять общую скорость вращения мотора без потери показателя мощности.

Характеристики регулятора оборотов электродвигателя

Если вы не хотите самостоятельно изготавливать оборудование, а хотите купить уже полностью готовое к применению устройство, то стоит обратить особое внимание на главные параметры и характеристики, такие, как мощность, тип системы управления прибором, напряжение в устройстве, частоту, а также напряжение рабочего типа. Лучше всего будет производить расчёт общих характеристик всего механизма, в котором стоит применять регулятор общего напряжения двигателя. Стоит обязательно помнить, что нужно производить сопоставление с параметрами частотного преобразователя.

Как управлять скоростью вращения кулера в ПК – схема сборки регулятора оборотов вентилятора 12В своими руками

Эта инструкция призвана помочь вам в создании простого 3-х режимного контроллера (регулятора оборотов вентилятора) для любого компьютерного кулера, рассчитанного на постоянное напряжение 12 В. Как управлять скоростью вращения кулера вы узнаете из данной инструкции.

Внимание! Вы должны понимать, что несете полную ответственность за то, что вы будете делать со своими устройствами, и, если вы что-то сломаете, вина будет лежать полностью на вас!

Данный регулятор оборотов кулера позволит переключать его в 3 режима: выключен, средняя скорость и полная скорость.

Возможность полного отключения кулеров корпуса компьютера, позволит уменьшить шум, издаваемый вентиляторами, когда не требуется интенсивное охлаждение температуры компонентов компьютера. Две скорости вращения вентиляторов будут поддерживать систему в тихом состоянии, при этом не переставая охлаждать ее.

Для управления оборотами вентилятора на ПК вам потребуются:

  • Вентиляторы постоянного тока, которые можно приобрести на Ebay. Вентиляторы используем с двумя выводами, которые не имеют регулировки частоты вращения и работают на полную мощность при напряжении 12 В (при этом сильно шумят). Не берите вентиляторы со светодиодной подсветкой, т.к. светодиоды все равно будут светить тускло, при снижении напряжения питания.
  • Выключатель.
  • Двухпозиционный переключатель.
  • Обрезки проводов.
  • Паяльник и припой.
  • Изоляционная лента или термоусадочная трубка.
  • Источник питания компьютера.
  • Отвертка (для вскрытия корпуса вашего компьютера).

Шаг 1: Отрезаем, откусываем, отстригаем

Сначала отрежьте штекер вентилятора, при этом оставьте провода как можно более длинными.

Вентилятор имеет один провод (плюсовой) – красный, второй провод (минусовой) – обычно черный.

Можете подключить несколько вентиляторов к одному компьютерному разъему питания Molex. Обрежьте провода, как показано на фото.

Шаг 2: Паяем

Разогрейте паяльник и приступайте к пайке.

Если вы будете подключать сразу несколько вентиляторов, то соедините их параллельно друг другу: красные провода – с красными, черные – с черными.

Нарастите провода для облегчения соединения вентиляторов с источником питания (на схеме наращенные провода показаны синим цветом).

Изолируйте соединения с помощью изоленты или термоусадочной трубки.

Шаг 3: Припаиваем выключатель

Отрицательный провод (черный), идущий от вентиляторов, припаяйте к одному из выводов выключателя.

Второй вывод выключателя припаяйте к черному, минусовому проводу штекера Molex. При этом, в случае необходимости, нарастите провод от штекера.

Шаг 4: Переключатель высокой и низкой скоростей

Изменение скорости вращения вентиляторов будет происходить за счет переключения между двумя напряжениями, которые будут сниматься с компьютерного штекера Molex:

Желтый провод – 12 В (полная скорость).
Красный провод – 5 В (средняя скорость).

Припаяйте желтый провод от штекера Molex к одному из внешних выводов двухпозиционного переключателя, а красный – к другому. Нарастите провода, если это потребуется.

К среднему выводу переключателя припаяйте отрезок провода и переходите к следующему шагу.

Шаг 5: Следующий шаг

Теперь спаяйте вместе провод, идущий от среднего контакта переключателя и плюсовой провод вентиляторов (красный).

Все электронные компоненты соединены, переходим к тестированию.

Шаг 6: Тестирование

Для проведения тестирования можете использовать старый блок питания от компьютера.

Предупреждение! В блоке питания компьютера присутствует высокое напряжение, опасное для жизни! Будьте осторожны!

Если у вас нет отдельного БП, выньте его из компьютера и только тогда проводите с ним опыты. Сгоревший блок питания лучше сгоревшего компьютера!

Отключите БП от сети!

Отсоедините штекеры от материнской платы и приводов компьютера. Открутите винты крепления блока питания и выньте его из корпуса.

Порядок разборки компьютера своими руками вы можете найти на YouTube.

Блок питания свободен! Найдите зеленый провод, идущий от блока питания. Это вывод 16 (согласно распиновки, показанной на фото).

Соедините зеленый провод 16 с черным 15 (землей). Это соединение заставит блок питания запускаться. Подключите блок питания к электросети и подсоедините вентиляторы.

Включите блок питания, затем, с помощью выключателя, включите вентиляторы. Теперь, с помощью двухпозиционного переключателя, вы можете выбирать скоростной режим работы вентиляторов.

Отключите вентиляторы и БП.

Шаг 7: Монтируем нашу поделку в компьютер

Вы должны сами определиться с местом установки переключателей в корпус; можете использовать для этого пустые отсеки для дисков или смонтировать их в верхней части корпуса компьютера. Можно вмонтировать выключатели в отдельную коробку и установить ее на стол, только при этом нужно будет удлинить провода.

Рассказываю как сделать какую-либо вещь с пошаговыми фото и видео инструкциями.

голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector