Setting96.ru

Строительный журнал
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Автомобильное зарядное устройство из компьютерного БП (АТ, АТХ)

Автомобильное зарядное устройство из компьютерного БП (АТ, АТХ)


Нарыл в нете все что связано с переделкой компьютерных БП . Сделал
зарядное для автомобильных аккумуляторов и блок питания 4-25 В
Параметры понравились , зарядное отдает 9А , больше не давал ,
радиаторы теплые , но в пределах нормы. Выбрал из всех источников
самое простое и важное. От компьютерного блока питания мощностью 200W,
реально получить 10 – 12А
Итак , основная переделка заключается в следующем , все лишние
провода выходящие с БП на разъемы отпаиваем, оставляем только 4 штуки
желтых +12в и 4 штуки черных корпус, cкручиваем их в жгуты . Находим на
плате микросхему с номером 494 , перед номером могут быть разные буквы
DBL 494 , TL 494 , а так же аналоги MB3759, KA7500 и другие с похожей
схемой включения. Ищем резистор идущий от 1-ой ножки этой микросхемы к
+5 В (это где был жгут красных проводов) и удаляем его. Далее собираем
по схеме.
Для регулироваемого (4В – 25В) блока питания R1 должен быть 1к .
Так же для блока питания желательно увеличить емкость электролита на
выходе 12В (для зарядного устройства этот электролит лучше исключить),
желтым пучком (+12 В) сделать несколько витков на ферритовом кольце
(2000НМ, диаметром 25 мм не критично).
Так же следует иметь ввиду , что на 12 вольтовом выпрямителе стоит
диодная сборка (либо 2 всречно включенных диода) рассчитанная на ток до
3 А , ее следует поменять на ту , которая стоит на 5 вольтовом
выпрямителе , она расчитана до 10 А , 40 V , лучше поставить диодную
сборку BYV42E-200 (сборка диодов Шотки Iпр = 30 А, V = 200 В), либо 2
встречно включенных диода КД2999, обычные диоды, такие как КД213 и
им подобные устанавливать нельзя.
Если БП АТХ для запуска необходимо соединить вывод soft-on с общим
проводом (на разьем уходит зеленым проводом).Вентилятор нужно
развернуть на 180 гвадусов , что бы дул внутрь блока ,если вы
используете как блок питания , запитать вентилятор лучше с 12-ой ножки
микросхемы через резистор 100 Ом.
Корпус желательно сделать из диэлектрика не забывая про
вентиляционные отверстия их должно быть достаточно.Родной металлический
корпус , используете на свой страх и риск.
При включении БП при большом токе может срабатывать защита , хотя
у меня при 9А не срабатывает , если кто с этим столкнется следует
сделать задержку нагрузки при включении на пару секунд , на
двух БП я с этим не столкнулся.

Похожие посты:
    (0) (0) (0) (0) (0) (0) (0)

Вы можете подписаться на новые комментарии к этой записи по RSS 2.0 Feed. Вы можете оставить комментарий или trackback со своего сайта.

1 комментарий

Только что знакомился с видео Ютуб, где разложена эта операция, однако там, резистор от первой ножки, идущий на + 5 заменен на мощный 10 Ком, а второй резистор на 26,5 ом, идущий от первой ножки к + 12V заменен на подстроечный резистор, и в последствии он заменен на постоянный, такого же сопротивления. Теперь вот сижу гадаю, что делать и кого из вас слушать…

ЗАРЯДНОЕ УСТРОЙСТВО — ЛАБОРАТОРНЫЙ БЛОК ПИТАНИЯ ИЗ ATX

Превращаем ненужный БП от компьютера в мощное зарядное устройство — лабораторный блок питания. Пошаговая фотоинструкция. Вначале ищем компьютерный блок питания формата ATX.

ищем компьютерный блок питания формата ATX

Выпаиваем всю выпрямительную часть и всё, что соединено с ножками 1, 2 и 3 микросхемы TL494. Также нужно выпаять диод, (отмечено 1 на плате) соединяющий выходную обмотку силового трансформатора с + питания TL494 – она будет питаться только от маленького «дежурного» преобразователя (у него есть не только 5V выход, но и 12V), чтобы не зависеть от выходного напряжения БП. И обратите внимание на электролит отмененным 2-ой, его оставить, он бывает от 1 до 4.7мкф. Я его меняю на 10мкфХ10в.

Делаем мощное зарядное устройство из БП АТХ

Отсоединяем от схемы ножки 15 и 16 – это второй усилитель ошибки, который мы используем для канала стабилизации тока.

Делаем мощное зарядное устройство из АТХ

Пунктиром очерчены детали, которые уже есть в БП.

ЗАРЯДНОЕ УСТРОЙСТВО - ЛАБОРАТОРНЫЙ БЛОК ПИТАНИЯ ИЗ ATX - СХЕМА

Выпрямительные диоды нужно соединить с 12-ти вольтовыми отводами вторичной обмотки силового трансформатора. Лучше поставить более мощные, например сборку 30CPQ150 – тогда можно максимальный выходной ток увеличить до 20А.

30CPQ150

Дроссель L1 делаем из кольца, оставив на нём только 5-тивольтовую обмотку, дроссель L2 из цепи 5V.

Дроссель БП делаем из кольца

Приводим схему выходной части в соответствие со схемой. Вентилятор запитываем от питания TL494 (12 нога) – так, чтобы он дул внутрь корпуса. На микросхеме ОУ LM358 (LM2904, или любой другой сдвоенный низковольтный операционник, который может работать в однополярном включении и при входных напряжениях от 0 В) собран измерительный усилитель выходного напряжения и тока, который будет давать измерительные сигналы на TL494. Резисторы R9 и R8 задают опорные напряжения.

мощное зарядное устройство из БП АТХ - пошаговая инструкция

Переменный резистор R9 регулирует выходное напряжение, R8 – выходной ток. Так как мне не нужно напряжение, а только ток для зарядки, то напряжение сделал на полную (получилось 24в), а оставил только регулятор тока. Токоизмерительный резистор R7 на 0.05 ом должен быть мощностью 5 ватт (10А^2*0.05ом). Питание для ОУ берём с выхода «дежурных» 5В БП ATX (обычно обозначены на плате как +5V SB или 5V STANDBY, фиолетовый провод). Нагрузка подключается к +OUT и -OUT.

Автомобильное зарядное устройство из БП АТХ - переделка и описание

Измерительный резистор R7 – это два 5-тиваттных резистора (белые) по 0.1ом соединённые параллельно.

Автомобильное зарядное устройство из БП АТХ компьютера

Нагрузочный резистор 470ом 1 Вт ставим параллельно C5. Он нужен чтобы БП ATX без нагрузки не оставался. Ток через него не учитывается, он до измерительного резистора R7 включён. Без него, тоже работать будет, но тогда если установить более низкое напряжение при отключенной от выхода нагрузке – долго ждать, пока C4 и C5 разрядятся до нужного напряжения.

САМОДЕЛЬНОЕ ЗАРЯДНОЕ УСТРОЙСТВО - ЛАБОРАТОРНЫЙ БЛОК ПИТАНИЯ

Упаковываем все в корпус, выводим необходимые элементы, и радуемся отличному лабораторному блоку питания, он же по совместительству импульсное зарядное устройство для автомобильных аккумуляторов. Автор статьи и фото: ear

Originally posted 2019-02-16 05:58:36. Republished by Blog Post Promoter

Зарядное устройство для АКБ из компьютерного блока питания

Поиски наименования ШИМ блока питания для ноутбука НР привели меня на форум, на котором участники интересовались вопросом переделки блока питания настольного компьютера, в частности «Power Man IP-P350A2J», в зарядное устройство автомобильных аккумуляторов.

Очень было приятно видеть жилку любознательности и творчества, желание что-то сделать самостоятельно у современного молодого поколения. Попытаюсь помочь любознательным и умелым в переделке этого блока в зарядное устройство.


Изображения блока питания Power Man IP-350A2J взяты с форума.

Не буду останавливаться на вопросах, связанных с процессом зарядки аккумуляторов и с разработкой полноценного зарядного устройства. Рассмотрим главную проблему в переделке компьютерного блока питания в зарядное устройство. Это — регулирование его выходного напряжения «+12В» в пределах от +10 до +15В для установки нужного тока заряда IЗ аккумулятора, который варьируется в амперном исчислении в пределах (0,05-0,1) QA его энергоемкости QA в ампер*часах. Например, если энергоемкость аккумулятора QA=72 А*ч, то зарядный ток должен быть в пределах (3,6-7,2) А. Примите к сведению, что высокие зарядные токи ведут к закипанию электролита в аккумуляторе и выделению из него сероводорода и водорода. При токе в амперах, равном 0,05 QA заряд аккумулятора протекает более длительно, но без обильного газовыделения.

Беремся за переделку указанного блока питания. Этот блок имеет схемы дежурного и рабочего питания, а также контроллер значений рабочих напряжений — супервизор U3 на базе микросхемы «w7510» (см. схему). Его функция — контроль соответствия рабочих напряжений блока питания требуемым величинам. При несоответствии хоть одного напряжения требуемой величине он заблокирует работу инвертора рабочего питания компьютера.

При включенном в сеть блоке питания и определенных настройках системного блока компьютер находится в режиме ожидания («спит и ждет» обращения к нему). При активации клавиатуры или мыши, с материнской платы системного блока на блок питания поступает сигнал «PS-On». Этот сигнал активирует супервизор U3, питающийся от источника дежурного питания блока, и он низким напряжением на контакте 3 (fpl) «открывает» оптопару РС1, а та — транзистор Q1. Через открытый транзистор Q1 напряжение дежурного питания блока (+12В) с контакта 7 (vcc) U4 поступает на контакт 7 (vcc) U1 — ШИМ инвертора рабочего питания. ШИМ U1 плавно запускает инвертор рабочего питания и на выводах вторичных обмоток Т1 появляются импульсные напряжения, которые выпрямляются диодными сборками D5, D7, D9 в цепях формирования рабочих напряжений блока питания: +12V, +5V и 3,3V и диодами D2, D4 — в цепях −12В и −5В.

Читать еще:  Точки регулировки пластикового окна

Супервизор — U3 после пуска рабочего инвертора осуществляет проверку соответствия рабочих напряжений блока питания требуемым значениям. Если какое либо из них не соответствует норме, супервизор высоким уровнем на контакте 3 (fpl) «запирает» оптопару РС1, а та в свою очередь — транзистор Q1. Подача напряжения питания через Q1 на ШИМ U1 прекращается и рабочий инвертор (на Q2 и Т1) перестает работать.

Таким образом, чтобы регулировать зарядное напряжение (+12В) в пределах +(10. 15)В, нужно «обойти» контроллер напряжений — супервизор U3. Самое простое — соединить перемычкой П1 его контакт 3 (fpl) с его же контактом 2 (gnd). Благодаря этой перемычке оптопара РС1 будет всегда открыта при включенном в сеть блоке питания, обеспечивая питание ШИМ U1 рабочего инвертора, независимо от супервизора. Можно перемычку заменить выключателем, совмещенным с переменным резистором регулирования выходного напряжения или электронным ключом, если есть желание придать ЗУ дополнительные функции.

Установив указанную перемычку, подключаем к выводам «+12В» и «┴» нагрузку в виде лампы дальнего света мощностью до 70 Вт и вольтметр. Включаем блок питания в сеть. С задержкой по времени после включения (при исправном блоке) лампа плавно загорается. Проверьте вольтметром напряжение на выводе «+12» блока. Если напряжение соответствует этому значению, делаем второй шаг.

Медленно поворачивая движок резистора VR1 влево и вправо, определяем диапазон изменения напряжения на выводе «+12В». Если в одном из крайних положений движка VR1 напряжение не выше +16В, а в другом — не ниже 10В, то вам нужно всего лишь заменить резистор VR1 на переменный того же номинала. Имейте в виду, что рабочее напряжение конденсаторов в фильтрах цепей формирования «+12В» и «−12В» всего 16В.

Если это не удается, то в следующем шаге удалите резистор R58 номиналом 5,19 кОм, диод D18, а номиналы резисторов R68 и VR1 замените, соответственно, на 2,4 кОм и 2 кОм. Если диапазон регулирования напряжения +12 выйдет за пределы +15В, номинал R68 нужно увеличить на (5…10)%.

Если вам нужно дополнительно стабилизированное и регулируемое напряжение «+5В», то установите резистор: R58=5,19 кОм на место. В этом случае цепи питания «+12В» и «+5В» будут стабилизированными в диапазоне регулирования.

Если вы хотите увеличить напряжение своего зарядного устройства более 16В, то замените электролитические конденсаторы в цепи +12В и −12В, на более высоковольтные для исключения их пробоя (можно с меньшим номиналом чтобы поместились на плате).


Результат переделки Power Man IP-P350A2J в зарядное устройство для автомобильных аккумуляторов.

В качестве VR1 берите СП3-4ам или другого типа устанавливайте на металлическую переднюю панель, соединенную с корпусом блока питания. Соединение резистора с платой выполнить экранированным проводом в изоляции. Экран провода соедините с общим проводом вторичной цепи блока «┴».

Для индикации зарядного тока и напряжения можно применить амперметр М42303 на ток 10 ампер и шунт 75ШСМ3-10-0,5. Амперметр с помощью кнопочного переключателя и последовательно включенных резисторов Rд1 = 470 Ом и подстроечного Rд2 = 200 Ом, можно «перевести» в измеритель напряжения (см. схему). Регулировкой резистора Rд2 можно корректировать показания М42303 в единицах напряжения.

Автоматическое ЗУ на МК ATmega16A

В этой статье я расскажу, как из компьютерного блока питания формата АТ/АТХ и самодельного блока управления изготовить довольно-таки «умное» зарядное устройство для свинцово-кислотных аккумуляторных батарей. К ним относятся т.н. «УПС-овые», автомобильные и другие АКБ широкого применения.

Описание
Устройство предназначено для зарядки и тренировки (десульфатации) свинцово-кислотных АКБ ёмкостью от 7 до 100 Ач, а также для приблизительной оценки уровня их заряда и емкости. ЗУ имеет защиту от неправильного включения батареи (переполюсовки) и от короткого замыкания случайно брошенных клемм. В нём применено микроконтроллерное управление, благодаря чему осуществляются безопасные и оптимальные алгоритмы зарядки: IUoU или IUIoU, с последующей «добивкой» до 100%-го уровня зарядки. Параметры зарядки можно подстроить под конкретный аккумулятор (настраиваемые профили) или выбрать уже заложенные в управляющей программе. Конструктивно зарядное устройство состоит из блока питания АТ/АТХ, который нужно немного доработать и блока управления на МК ATmega16A. Всё устройство свободно монтируется в корпусе того же блока питания. Система охлаждения (штатный кулер БП) включается/отключается автоматически.
Достоинства данного ЗУ — его относительная простота и отсутствие трудоёмких регулировок, что особенно актуально для начинающих радиолюбителей.
]1. Режим зарядки — меню «Заряд». Для аккумуляторов емкостью от 7Ач до 12Ач по умолчанию задан алгоритм IUoU. Это значит:
— первый этап- зарядка стабильным током 0.1С до достижения напряжения14.6В
— второй этап-зарядка стабильным напряжением 14.6В, пока ток не упадет до 0,02С
— третий этап-поддержание стабильного напряжения 13.8В, пока ток не упадет до 0.01С. Здесь С — ёмкость батареи в Ач.
— четвёртый этап — «добивка». На этом этапе отслеживается напряжение на АКБ. Если оно падает ниже 12.7В, включается заряд с самого начала.
Для стартерных АКБ (от 45 Ач и выше) применяем алгоритм IUIoU. Вместо третьего этапа включается стабилизация тока на уровне 0.02C до достижения напряжения на АКБ 16В или по прошествии времени около 2-х часов. По окончанию этого этапа зарядка прекращается и начинается «добивка». Это- четвёртый этап. Процесс заряда проиллюстрирован графиками рис.1 и рис.2.
2. Режим тренировки (десульфатации) — меню «Тренировка». Здесь осуществляется тренировочный цикл:
10 секунд — разряд током 0,01С, 5 секунд — заряд током 0.1С. Зарядно-разрядный цикл продолжается, пока напряжение на АКБ не поднимется до 14.6В. Далее — обычный заряд.
3. Режим теста батареи. Позволяет приблизительно оценить степень разряда АКБ. Батарея нагружается током 0,01С на 15 секунд, затем включается режим измерения напряжения на АКБ.
4. Контрольно-тренировочный цикл (КТЦ). Если предварительно подключить дополнительную нагрузку и включить режим «Заряд» или «Тренировка», то в этом случае, сначала будет выполнена разрядка АКБ до напряжения 10.8В, а затем включится соответствующий выбранный режим. При этом измеряются ток и время разряда, таким образом, подсчитывается примерная емкость АКБ. Эти параметры отображаются на дисплее после окончания зарядки (когда появится надпись «Батарея заряжена») при нажатии на кнопку «выбор». В качестве дополнительной нагрузки можно применить автомобильную лампу накаливания. Ее мощность выбирается, исходя из требуемого тока разряда. Обычно его задают равным 0.1С — 0.05С (ток 10-ти или 20-ти часового разряда).
Перемещение по меню осуществляется кнопками «влево», «вправо», «выбор». Кнопкой «ресет» осуществляется выход из любого режима работы ЗУ в главное меню.
Основные параметры зарядных алгоритмов можно настроить под конкретный аккумулятор, для этого в меню есть два настраиваемых профиля — П1 и П2. Настроенные параметры сохраняются в энергонезависимой памяти (EEPROM-е).
Чтобы попасть в меню настроек нужно выбрать любой из профилей, нажать кнопку «выбор», выбрать «установки», «параметры профиля», профиль П1 или П2. Выбрав нужный параметр, нажимаем «выбор». Стрелки «влево» или «вправо» сменятся на стрелки «вверх» или «вниз», что означает готовность параметра к изменению. Выбираем нужное значение кнопками «влево» или «вправо», подтверждаем кнопкой «выбор». На дисплее появится надпись «Сохранено», что обозначает запись значения в EEPROM.
Значения настроек:
1. «Алгоритм заряда». Выбирается IUoU или IUIoU. См. графики на рис.1 и рис.2.
2. «Емкость АКБ». Задавая значение этого параметра, мы задаем ток зарядки на первом этапе I=0.1C, где С- емкость АКБ В Ач. (Таким образом, если нужно задать ток заряда, например 4.5А, следует выбрать емкость АКБ 45Ач).
3. «Напряжение U1». Это напряжение, при котором заканчивается первый этап зарядки и начинается второй. По умолчанию задано значение 14.6В.
4. «Напряжение U2». Используется только, если задан алгоритм IUIoU. Это напряжение, при котором заканчивается третий этап зарядки. По умолчанию — 16В.
5. «Ток 2-го этапа I2». Это значение тока, при котором заканчивается второй этап зарядки. Ток стабилизации на третьем этапе для алгоритма IUIoU. По умолчанию задано значение 0.2С.
6. «Окончание заряда I3». Это значение тока, по достижению которого зарядка считается оконченной. По умолчанию задано значение 0.01С.
7. «Ток разряда». Это значение тока, которым осуществляется разряд АКБ при тренировке зарядно-разрядными циклами.

Читать еще:  Станция для дома регулировка давления воды


Выбор и переделка блока питания.

В нашей конструкции мы используем блок питания от компьютера. Почему? Причин несколько. Во–первых, это — практически готовая силовая часть. Во-вторых, это же и корпус нашего будущего устройства. В-третьих, он имеет малые габариты и вес. И, в-четвёртых, его можно приобрести практически на любом радиорынке, барахолке и в компьютерных сервисных центрах. Как говорится, дёшево и сердито.
Из всего многообразия моделей блоков питания нам лучше всего подходит блок формата АТX, мощностью не менее 250 Вт. Нужно только учесть следующее. Подходят лишь те блоки питания, в которых применён ШИМ-контроллер TL494 или его аналоги (MB3759, КА7500, КР1114ЕУ4). Можно также применить и БП формата AT, только придется изготовить еще маломощный блок дежурного питания (дежурку) на напряжение 12В и ток 150-200мА. Разница между AT и ATX – в схеме начального запуска. АТ запускается самостоятельно, питание микросхемы ШИМ–контроллера берётся с 12-вольтовой обмотки трансформатора. В ATX для начального питания микросхемы служит отдельный источник 5В, называемый «источник дежурного питания» или «дежурка». Более подробно о блоках питания можно прочитать, например, здесь , а переделка БП в зарядное устройство неплохо описана вот здесь.
Итак, блок питания имеется. Сначала необходимо его проверить на исправность. Для этого его разбираем, вынимаем предохранитель и вместо него подпаиваем лампу накаливания 220 вольт мощностью 100-200Вт. Если на задней панели БП имеется переключатель сетевого напряжения, то он должен быть установлен на 220В. Включаем БП в сеть. Блок питания АТ запускается сразу, для ATX нужно замкнуть зелёный и чёрный провода на большом разъёме. Если лампочка не светится, кулер вращается, а все выходные напряжения в норме — значит, нам повезло и наш блок питания рабочий. В противном случае, придётся заняться его ремонтом. Оставляем лампочку пока на месте.
Для переделки БП в наше будущее зарядное устройство, нам потребуется немного изменить «обвязку» ШИМ-контроллера. Несмотря на огромное разнообразие схем блоков питания, схема включения TL494 стандартная и может иметь пару вариаций, в зависимости от того, как реализованы защиты по току и ограничения по напряжению. Схема переделки показана на рис.3.

На ней показан только один канал выходного напряжения: +12В. Остальные каналы: +5В,-5В, +3,3В не используются. Их обязательно нужно отключить, перерезав соответствующие дорожки или выпаяв из их цепей элементы. Которые, кстати, нам могут и пригодиться для блока управления. Об этом — чуть позже. Красным цветом обозначены элементы, которые устанавливаются дополнительно. Конденсатор С2 должен иметь рабочее напряжение не ниже 35В и устанавливается взамен существующего в БП. После того, как «обвязка» TL494 приведена к схеме на рис.3, включаем БП в сеть. Напряжение на выходе БП определяется по формуле: Uвых=2,5*(1+R3/R4) и при указанных на схеме номиналах должно составлять около 10В. Если это не так, придется проверить правильность монтажа. На этом переделка закончена, можно убирать лампочку и ставить на место предохранитель.

Схема и принцип работы.

Схема блока управления показана на рис.4.

Она довольно проста, так как все основные процессы выполняет микроконтроллер. В его память записывается управляющая программа, в которой и заложены все алгоритмы. Управление блоком питания осуществляется с помощью ШИМ с вывода PD7 МК и простейшего ЦАП на элементах R4,C9,R7,C11. Измерение напряжения АКБ и зарядного тока осуществляется средствами самого микроконтроллера — встроенным АЦП и управляемым дифференциальным усилителем. Напряжение АКБ на вход АЦП подается с делителя R10R11, Зарядный и разрядный ток измеряются следующим образом. Падение напряжения с измерительного резистора R8 через делители R5R6R10R11 подается на усилительный каскад, который находится внутри МК и подключен к выводам PA2, PA3. Коэффициент его усиления устанавливается программно, в зависимости от измеряемого тока. Для токов меньше 1А коэффициент усиления (КУ) задается равным 200, для токов выше 1А КУ=10. Вся информация выводится на ЖКИ, подключенный к портам РВ1-РВ7 по четырёхпроводной шине. Защита от переполюсовки выполнена на транзисторе Т1, сигнализация неправильного подключения — на элементах VD1,EP1 ,R13. При включении зарядного устройства в сеть транзистор Т1 закрыт низким уровнем с порта РС5, и АКБ отключена от зарядного устройства. Подключается она только при выборе в меню типа АКБ и режима работы ЗУ. Этим обеспечивается также отсутствие искрения при подключении батареи. При попытке подключить аккумулятор в неправильной полярности сработает зуммер ЕР1 и красный светодиод VD1, сигнализируя о возможной аварии. В процессе заряда постоянно контролируется зарядный ток. Если он станет равным нулю (сняли клеммы с АКБ), устройство автоматически переходит в главное меню, останавливая заряд и отключая батарею. Транзистор Т2 и резистор R12 образуют разрядную цепь, которая участвует в зарядно-разрядном цикле десульфатирующего заряда (режим тренировки) и в режиме теста АКБ. Ток разряда 0.01С задается с помощью ШИМ с порта PD5. Кулер автоматически выключается, когда ток заряда падает ниже 1,8А. Управляет кулером порт PD4 и транзистор VT1.

Детали и конструкция.

Микроконтроллер. В продаже обычно встречаются в корпусе DIP-40 или TQFP-44 и маркируются так: ATMega16А-PU или ATMega16A-AU. Буква после дефиса обозначает тип корпуса: «P»- корпус DIP, «A»- корпус TQFP. Встречаются также и снятые с производства микроконтроллеры ATMega16-16PU, ATMega16-16AU или ATMega16L-8AU. В них цифра после дефиса обозначает максимальную тактовую частоту контроллера. Фирма- производитель ATMEL рекомендует использовать контроллеры ATMega16A (именно с буквой «А») и в корпусе TQFP, то есть, вот такие: ATMega16A-AU, хотя в нашем устройстве будут работать все вышеперечисленные экземпляры, что и подтвердила практика. Типы корпусов отличаются также и количеством выводов (40 или 44) и их назначением. На рис.4 изображена принципиальная схема блока управления для МК в корпусе DIP.
Резистор R8 –керамический или проволочный, мощностью не менее 10 Вт, R12- 7-10Вт. Все остальные- 0.125Вт. Резисторы R5,R6,R10 и R11 нужно применять с допустимым отклонением 0.1-0.5%. Это очень важно! От этого будет зависеть точность измерений и, следовательно, правильная работа всего устройства.
Транзисторы T1 и Т1 желательно применять такие, как указаны на схеме. Но если придется подбирать замену, то необходимо учитывать, что они должны открываться напряжением на затворе 5В и, конечно же, должны выдерживать ток не ниже 10А. Подойдут, например, транзисторы с маркировкой 40N03GР, которые иногда используются в тех же БП формата АТХ, в цепи стабилизации 3.3В.
Диод Шоттки D2 можно взять из того же БП, из цепи +5В, которая у нас не используется. Элементы D2, Т1 иТ2 через изолирующие прокладки размещаются на одном радиаторе площадью 40 квадратных сантиметров. Буззер EP1- со встроенным генератором, на напряжение 8-12 В, громкость звучания можно подрегулировать резистором R13.
Жидкокристаллический индикатор – WH1602 или аналогичный, на контроллере HD44780, KS0066 или совместимых с ними. К сожалению, эти индикаторы могут иметь разное расположение выводов, так что, возможно, придется разрабатывать печатную плату под свой экземпляр
Программа
Управляющая программа содержится в папке «Программа» Конфигурационные биты (фузы) устанавливаются следующие:
Запрограммированы (установлены в 0):
CKSEL0
CKSEL1
CKSEL3
SPIEN
SUT0
BODEN
BODLEVEL
BOOTSZ0
BOOTSZ1
все остальные — незапрограммированы (установлены в 1).
Наладка
Итак, блок питания переделан и выдает напряжение около 10В. При подключении к нему исправного блока управления с прошитым МК, напряжение должно упасть до 0.8..15В. Резистором R1 устанавливается контрастность индикатора. Наладка устройства заключается в проверке и калибровке измерительной части. Подключаем к клеммам аккумулятор, либо блок питания напряжением 12-15В и вольтметр. Заходим в меню «Калибровка». Сверяем показания напряжения на индикаторе с показаниями вольтметра, при необходимости, корректируем кнопками «<» и «>». Нажимаем «Выбор». Далее идет калибровка по току при КУ=10. Теми же кнопками «<» и «>» нужно выставить нулевые показания тока. Нагрузка (аккумулятор) при этом автоматически отключается, так что ток заряда отсутствует. В идеальном случае там должны быть нули или очень близкие к нулю значения. Если это так, это говорит о точности резисторов R5,R6,R10,R11,R8 и хорошем качестве дифференциального усилителя. Нажимаем «Выбор». Аналогично — калибровка для КУ=200. «Выбор». На дисплее отобразится «Готово» и через 3 сек. устройство перейдет в главное меню.
Калибровка окончена. Поправочные коэффициенты хранятся в энергонезависимой памяти. Здесь стоит отметить, что если при самой первой калибровке значение напряжения на ЖКИ сильно отличается от показаний вольтметра, а токи при каком — либо КУ сильно отличаются от нуля, нужно применить (подобрать) другие резисторы делителя R5,R6,R10,R11,R8, иначе в работе устройства возможны сбои. При точных резисторах (с допуском 0,1-0,5%) поправочные коэффициенты равны нулю или минимальны. На этом наладка заканчивается. Если же напряжение или ток зарядного устройства на каком-то этапе не возрастает до положенного уровня или устройство «выскакивает» в меню, нужно ещё раз внимательно проверить правильность доработки блока питания. Возможно, срабатывает защита.
Весь материал одним архивом можно скачать здесь

Читать еще:  Как отрегулировать оконные стеклопакеты

И в заключение, несколько фото.

Расположение элементов в корпусе блока питания:
Изображение - savepic.su — сервис хранения изображений

Готовая же конструкция может выглядеть так:
Изображение - savepic.su — сервис хранения изображений

так:
Изображение - savepic.su — сервис хранения изображений

Как компьютерный блок питания переквалифицировать в зарядное устройство

Рано или поздно каждый автомобилист сталкивается с необходимостью подзарядки аккумулятора стационарным зарядным устройством. Стоит оно недёшево, поэтому мастеровитые автовладельцы предпочитают изготавливать их самостоятельно. Вариантов решения проблемы имеется немало, и один из самых доступных, практически не требующий вложений, – использовать для этих целей компьютерный блок питания.

Разумеется, его выходные характеристики, хотя и близки к необходимым, но всё равно требуют некоторой корректировки.

Переделка блока питания компьютера в зарядное устройство

Что нужно для переделки

Поскольку значительная часть современных БП (мощностью от 200 до 400 В) производятся на базе ШИМ-контроллера 3528, опишем процедуру переделки именно для таких источников питания. Нам потребуются:

Диод

  • резисторы номиналом 1,0/2,7 кОм;
  • резисторы 0,2/0,068 кОм;
  • паяльник с принадлежностями (канифоль, олово);
  • зажимы типа «крокодил» с проводами;
  • отвёртки с плоским и крестообразным наконечником;
  • 12-вольтное автомобильное реле;
  • 3 одноамперных диода 1N4007;
  • 2 конденсатора на 25 В;
  • светодиод зелёного цвета;
  • мультиметр (или вольтамперметр);
  • силиконовый герметик;
  • 2-метровый медный изолированный провод.

Блок питания, который мы хотим использовать для самодельного ЗУ, должен иметь следующие характеристики:

  • номинал напряжения – 110/220 В;
  • выходное напряжение ИБП – 12 В;
  • выходной ток – 8 А;
  • номинал мощности – 230 Вт.

Если всё готово, можно приступать к переделке компьютерного импульсного блока питания в автомобильное зарядное устройство.

Пошаговая инструкция

Зарядка АКБ происходит при напряжении в пределах 13,9-14,4 В. Это больше того, что может обеспечить БП. В обычном компьютерном блоке для понижения 220 В до требуемого значения используют микросхему TL494 – она представляет собой драйвер транзисторного элемента цепи, используемого для защиты устройства от высоких токов. БП включает ещё одну микросхему, TL431 (или её аналог), используемую для контроля выходного напряжения. Она работает в связке со специальным резисторным элементом, позволяющим регулировать выходное напряжение с высокой точностью.

TL494

Пошаговый алгоритм переделки своими руками компьютерного БП в автомобильную зарядку:

  • первое, что нужно сделать – избавить БП от лишних элементов и кабелей. Выпаиваем их с помощью паяльника. Обращаем внимание на переключатель 110/220 В – его нужно удалить в первую очередь; Переключатель напряжения
  • затем отпаиваем все провода, включая синий, идущий к конденсатору. Жёлтые проводки (их должно быть 4) оставляем, как и пучок чёрных проводков. Не трогаем и зелёный провод, все остальные выпаиваем;
  • заменяем 16-вольтные конденсаторы на 25-вольтные (к ним идут жёлтые провода); Расцветка проводов
  • следующий этап – отключение защиты БП от скачков напряжения. Не удивляйтесь – компьютерный блок рассчитан на выходное напряжение 12 В, поэтому 14,4 В будет воспринято как пресловутый скачок, и БП отключится. Чтобы этого не произошло, замыкаем контакты низковольтного оптрона припоем (отмечено красным цветом); Отключение защиты
  • теперь нужно добиться вожделенных 14,4 В на выходе. Для этого нужно использовать подстроечный резистор схемы TL431, но он позволит увеличить напряжение только до 13 В, чего недостаточно. Поэтому заменяем резистор, подключённый последовательно с подстроечным, на элемент номиналом 2,7 кОм;
  • выпаиваем транзистор, расположенный рядом со схемой TL431 (обведено красным кружочком); выпаиваем транзистор
  • чтобы выходное напряжение было стабильным, нужно увеличить нагрузку по 12-вольтному каналу, для чего меняем резистор на 200-омный (2 Вт), такую же операцию следует произвести в дополнительной 5-вольтной цепи, впаяв резистор на 68 Ом. Это позволит получить на выходе 14,4 В без нагрузки;
  • теперь берёмся за выходной ток. На разных БП эта величина своя, нам же нужно ограничить силу тока 8 амперами. Для этого меняем резистор в первичной цепи обмотки (около трансформатора) на элемент номиналом 0,47 Ом (мощностью 1 Вт). На рисунке красным кружком обведён резистор первичной цепи, подлежащий замене; Выходной ток
  • Для обеспечения защиты от переполюсовки нам нужно самостоятельно изготовить небольшую плату, в которую впаиваем 12-вольтное реле с 4 выводами, два одноапмерных диода и зелёный светодиод, сигнализирующий об окончании процесса зарядки. Потребуется также резистор на 1 кОм. Схема платы приведена на рисунке. обеспечения защиты
  • Реле можно смонтировать на радиаторе блока питания посредством герметика, можно зафиксировать его и саморезами, но герметик лучше, поскольку обеспечивает необходимую эластичность соединения;
  • Завершающий этап – подключение к нашему боку проводов. Желательно использовать разноцветные (чёрный и красный), чтобы при подключении АКБ не возникало путаницы. Каждый из проводов должен быть длиной не менее метра (чем длиннее, тем лучше) и сечением от 3,0 мм 2 . К другим концам проводов подключаем зажимы («крокодилы»). Для фиксации проводов в радиаторном блоке просверливают два отверстия такого диаметра, чтобы можно было продеть нейлоновые стяжки, которыми и прикрепляются провода. Желательно также снабдить наше самодельное зарядное устройство амперметром, который подключается параллельно к основной цепи блока питания.

Зарядка готова, можно приступать к тестированию.

Как переделать БП ноутбука в зарядное устройство

Блок питания настольного ПК и ноутбука – это абсолютно разные девайсы, но и ноутбучный блок можно приспособить для зарядки АКБ. У переносного компьютера выходное напряжение 19 В – это больше того, что нужно, так что здесь задача противоположная – понижение напряжения.

Блок питания

Рассмотрим алгоритм переделки блока питания ноутбука Great Wall в ЗУ для авто:

  • первая задача – демонтировать блок питания. На разных моделях эта операция может иметь свои нюансы, нам важно не повредить БП при разборке. В ноутбуках блок питания представляет собой плату, в нашем случае это БП, работающий на двух микросхемах, TEA1751/1761. Вы можете узнать выходной вольтаж блока, подключив к выходам вольтметр. У нашей модели БП рабочий номинал на выходе составил 18,2 В;
  • для выполнения задачи снижения выходного напряжения до 14,4 В нужно найти резистор, соединяющий положительный вывод БП с 6 контактом микросхемы ТЕА176. Выпаиваем его и заменяем на подстроечный резистор номиналом 22 кОм, предварительно настроенный на 18 кОм (номинал родного резистора). Паяльные работы следует выполнять максимально аккуратно – все детали микросхем расположены очень плотно, так что шанс повредить их существует. Понижаем величину подстроечного сопротивления, пока не получим на выходе нужные 14,4 В; Схема переделки блока питания
  • теперь подстроечный резистор можно выпаять, после чего нужно измерить его сопротивление (мы получили 12,3 кОм). Впаиваем на его место постоянный резистор с таким сопротивлением (если точного номинала подобрать не удаётся, можно использовать два резистора с суммарным сопротивлением, равным заданному, например, на 10 кОм и 2,4 кОм). Впаивать в плату их нужно после того, как концы резисторов заключены в термокембрик;
  • теперь можно протестировать напряжение на выходе, у нас получилось 14,3 В, и этого достаточно для выполнения зарядки аккумулятора авто; Тестирование напряжения
  • приступаем к обратной операции – сборке нашего блока питания, превращённого в автомобильную зарядку. Останется подключить провода с зажимами. Перед их впаиванием убедитесь в правильности соблюдения полярности: минусовый контакт должен стать центральным проводом, плюсовый – оплёткой. Зарядка АКБ

Такое зарядное устройство будет ничуть не хуже того, что получится из БП стационарного компьютера. Во время процедуры зарядки батареи величина тока будет изменяться в пределах 2-3 А. Когда этот показатель упадёт до 0,25-0,5 А, зарядку можно прекращать. Для облегчения контроля над ходом зарядки аккумулятора ЗУ желательно оснастить амперметром, а также светодиодом, который будет предупреждать автовладельца об окончании зарядки.

Как видим, в переделке компьютерного БП в зарядку нет ничего сложного – достаточно минимальных знаний в схемотехнике и умений обращаться с паяльником.

голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector