Setting96.ru

Строительный журнал
4 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Дистанционно управляемый переменный резистор

Дистанционно управляемый переменный резистор

Разное

На сайте Радиочипи показана схема устройства, функционально заменяющего переменный резистор. Функциональным аналогом переменного резистора здесь является схема на мультиплексоре D2 типа К561КП2 и набора постоянных резисторов R1R7. Мультиплексор К561КП2 представляет собой набор из восьми ключей, выполненных по МОП-технологии, одни выводы каналов которых объединены на вывод 3, а противоположные на отдельные выводы. Каналы таковы, что работают как «твердотельное реле» и могут пропускать как аналоговые, так и цифровые сигналы.

distancionno-upravlyaemyj-peremennyj-rezistor

Практически, К561КП2 представляет собой переключатель на восемь положений, регулируемый с помощью двоичного трехразрядного кода, поступающего на его управляющие входы. В данном случае «подковку» аналога переменного резистора изображают последовательно включенные резисторы R1R7, а вместо «ползунка» работает вывод 3 мультиплексора D2. Отличие от обычного переменного резистора в том, что здесь регулировка не плавная, а восемью фиксированными положениями.

Для дистанционного управления используется схема на микроконтроллере D1 типа PIC12F629, на котором выполнен декодер команд регулировки громкости «VOL+» и «VOL», посылаемых стандартным пультом дистанционного управления, работающего по протоколу RC5. При нажатии кнопок «VOL+» и «VOL» пульта RC5 двоичный код на выходе, образованном портами GP0, GP1 и GP2, последовательно изменяется от «000» до «111» в ту или другую сторону (в зависимости от регулировки на уменьшение или увеличение). Сигналы пульта принимаются фотоприемником FP1.

Пользуясь таким «переменным резистором» нужно знать, что напряжение, под которым он может находиться не должно превышать напряжения питания микросхемы, то есть. 5V.
На рисунке 2 показан вариант использования такой схемы для регулировки громкости в стерео УНЧ. Здесь сделан сдвоенный «переменный резистор», поэтому для второго стереоканала используется ещё один мультиплексор. Эквивалентное сопротивление «переменного резистора» 2×70 кОм.

Реализован принцип сдвоенного переменного резистора. включенного потенциометром, регулирующим напряжение входного сигнала с разъема Х1, проходящего через «переменный резистор» на разъем Х2. «Переменный резистор» с линейным законом регулировки. Но, изменив сопротивления отдельных резисторов из числа R1R14 можно организовать практически любой закон регулировки. На выводы 7 D2 и D3 подается отрицательное напряжение 5V. Дело в том, что наиболее линейный участок каналов ИМС тельное напряжение.

В результате ключи находятся под напряжением 10V, а нуль ЗЧ лежит в точке +5V. При этом, сами каналы ни под каким напряжением смещения не находятся. На рисунке 3 приводится схема переключателя 8и фиксированных настроек для УКВ приемника, сделанного на том же принципе.

К561КП2 в зоне где-то посредине между положительным и отрицательным напряжением. Поскольку напряжение аудиосигнала обычно невелико, чтобы исключить появление искажений на вывод 7 (минус питания ключей) подано отрицательное напряжение. В результате ключи находятся под напряжением 10V, а нуль ЗЧ лежит в точке +5V. При этом, сами каналы ни под каким напряжением смещения не находятся. На рисунке 3 приводится схема переключателя 8-и фиксированных настроек для УКВ приемника, сделанного на том же принципе.

Что такое резистор?

Что такое резистор — это пассивный элемент электрических цепей, который имеет конкретное или переменное значение электрического сопротивления, резистор предназначен для линейного преобразования силы тока в напряжение и обратно, ограничения тока, поглощения электрической энергии и т.д. Резистор является наиболее часто встречающимся элементом. Ниже будет рассказано, что такое резистор и для чего он нужен, как резисторы обозначаются на радиосхемах и какие виды резисторов существуют.

Назначение резисторов – создание сопротивления электрическому току. Различают постоянные и переменные резисторы. В зависимости от мощности электрического тока, которую способен «рассеять» резистор, зависит и его размер.

Что такое резистор

На рисунке мы видим, как различаются резисторы. Резистор, находящийся справа – самый мощный среди представленных. Его мощность может составлять несколько киловатт. Правый резистор называется SMD-резистором. Его размер говорит сам за себя о его мощности. Нанесенные на резисторы надписи говорят о их видах и мощности.

Маркировка резисторов.

Обозначения резисторов на схемах различаются в зависимости от страны. В нашей стране можно понять, где обозначен резистор, по прямоугольнику с маркировкой в виде наклонных или вертикальных линий, знаков V или Х, с буквой «R» вверху прямоугольника. На зарубежных (американских) схемах резистор обозначается сплошной линией с несколькими изломами.

Что такое резистор

Ниже на рисунке видна маркировка резисторов:

Что такое резистор

Наклонные линии обозначают мощность резистора до 1 Вт. Вертикальные линии и знаки V и X (римские цифры), указывают на мощность резистора в несколько Ватт, в соответствии со значением римской цифры.

Переменный резистор.

Переменный резистор — это резистор, у которого электрическое сопротивление между подвижным контактом и выводами резистивного элемента можно изменять механическим способом.

Переменные резисторы, их также называют реостатами или потенциометрами, предназначены для постепенного регулирования силы тока и напряжения. Выглядят они так:

Читать еще:  Как отрегулировать керамический браслет для часов

Что такое резистор

Разница в том, что реостат регулирует силу тока в электрической цепи, а потенциометр — напряжение. На радиосхемах переменные резисторы обозначаются прямоугольником с пририсованной к их корпусу стрелочкой.

Что такое резистор

На схемах цифрами от 1 до 3 указывается расположение выходов резистора.

Что такое резистор

Регулировать мощность сопротивления переменных резисторов можно с помощью вращения специальной ручки. Те из резисторов, у которых регулировка сопротивления резистора может осуществляться только с помощью отвертки или специального ключа-шестигранника, называются подстроечными переменными резисторами. Выглядят они так:

Что такое резистор

Подстроечный резистор.

На радиосхемах подстроечные резисторы обозначаются следующим образом:

Что такое резистор

Чтобы переменный потенциометр использовать в качестве переменного реостата, нужно соединить два вывода между собой.

Термисторы, варисторы и фоторезисторы.

Кроме реостатов и потенциометров есть и другие виды резисторов: термисторы, варисторы и фоторезисторы. Это интересно, но термисторы, в свою очередь, делятся на термисторы и позисторы. Позистор – это термистор, у которого сопротивление возрастает вместе с ростом температуры окружающей среды. У термисторов, наоборот, чем выше температура вокруг, тем меньше сопротивление. Это свойство обозначают как ТКС – тепловой коэффициент сопротивления.

Что такое резистор

В зависимости от ТКС (отрицательный он или положительный) обозначают на схеме термисторы следующим образом:

Что такое резистор

Следующий особый класс резисторов – это варисторы. Они изменяют силу сопротивления в зависимости от подаваемого на них напряжения. Ни картинке ниже вы видите, как выглядят варисторы

Что такое резистор

Зная свойства варистора, можно догадаться, что такой резистор защищает электрическую цепь от перенапряжения. На схемах варисторы обозначаются так:

Что такое резистор

В зависимости от интенсивности освещения изменяет свое сопротивление еще один вид резисторов – фоторезисторы. Причем не важно, каков источник освещения: искусственный или естественный. Их особенность еще и в том, что ток в них протекает как в одном, так и в другом направлении, то есть еще говорят, что фоторезисторы не имеют p-n перехода. Выглядят фоторезисторы так:

Что такое резистор

А на схемах изображаются так:

Что такое резистор

Сегодня невозможно изготовить ни одно, сколько-нибудь функциональное, электронное устройство без резисторов. Они используются везде: от компьютеров до систем охраны.

Виды и особенности схем ограничителей силы тока

Регулируемый ограничитель тока

Ограничитель силы тока – устройство, предназначенное для исключения возможного повышения силы тока в схеме выше заданного значения. Самым простым ограничителем является обыкновенный плавкий предохранитель. Конструктивно предохранитель представляет собой плавкую вставку, заключенную в изолятор корпус. Если в схеме по тем или иным причинам повышается сила тока, потребляемая нагрузкой, плавкая вставка перегорает, и питание нагрузки прекращается.

Виды ограничителей

При всех преимуществах использования предохранителя он обладает одним серьезным недостатком – низким быстродействием, что делает невозможным его применение в некоторых случаях. К недостаткам можно отнести и одноразовость предохранителя – при его перегорании придется искать и устанавливать предохранитель точно такой же, как и перегоревший.

Электронные ограничители

Гораздо более совершенными по сравнению с упомянутыми выше предохранителями являются электронные ограничители. Условно такие устройства можно разделить на два типа:

  • восстанавливающиеся автоматически после устранения возникшей неисправности,
  • восстанавливающиеся вручную. Например: в схеме ограничителя предусмотрена кнопка, нажатие которой приводи к ее перезапуску.

Отдельно стоит сказать о так называемых пассивных устройствах защиты. Такие устройства предназначены для световой и/или звуковой сигнализации о ситуациях превышения допустимого тока в нагрузке. В большинстве своем такие схемы сигнализации применяются совместно с электронными ограничителями.

Простейшая схема на полевом транзисторе

Ограничитель тока

Самым простым решением при необходимости ограничения постоянного тока в нагрузке является использование схемы на полевом транзисторе. Принципиальная схема этого устройства показана на рис.1:

Рис. 1 Схема на полевом транзисторе

Ток нагрузки при использовании схемы представленной на рис.1 не может быть больше начального тока стока примененного транзистора. Следовательно, диапазон ограничения напрямую зависит от типа транзистора. Например, при использовании отечественного транзистора КП302 ограничение составит 30-50 мА.

Ограничитель на биполярном транзисторе

Основным недостатком схемы, описанной выше, является сложность изменения пределов ограничения. В более совершенных устройствах для исключения этого недостатка применяют дополнительный элемент, выполняющий функции датчика. Как правило, такой датчик представляет собой мощный резистор, который включается последовательно с нагрузкой. В момент, когда на резисторе падение напряжения достигнет определенной величины, автоматически произойдет ограничение силы тока. Схема такого устройства показана на рисунке 2.

Рис. 2 Схема на биполярных транзисторах

Регулируемый ограничитель тока

Как можно заметить, основой схемы являются два биполярных транзистора структуры n p n . В качестве датчика используется резистор R 3 с сопротивлением 3,6 Ом.

Принцип действия устройства следующий: напряжение от источника поступает на резистор R 1, а через него и на базу транзистора VT 1. Транзистор открывается, и большая часть напряжения от источника поступает на выход устройства. При этом транзистор VT 2 находится в закрытом состоянии. В момент, когда на датчике (резистор R 3) падение напряжение достигнет порога открытия транзистора VT 2, он откроется, а транзистор VT 1 наоборот начнет закрываться, ограничивая тем самым ток на выходе устройства. Светодиод HL 1 является индикатором срабатывания ограничителя.

Читать еще:  Домашнее кресло с регулировкой наклона спинки

Порог срабатывания зависит от сопротивления резистора R 3 и напряжения открытия транзистора VT 2. Для описанной схемы порог ограничения составляет: 0,7 В/ 3,6 Ом = 0,19 А.

Схема с ручной регулировкой

В некоторых случаях требуется устройство с возможностью ручного изменения величины ограничения тока в нагрузке, например, если речь идет о необходимости заряда автомобильных аккумуляторных батарей. Схема регулируемого устройства показана на рисунке 3.

Рис. 3 Схема с регулировкой ограничения тока

Технические характеристики устройства:

  • напряжение на входе – до 40 В,
  • напряжение на выходе – до 32 В,
  • диапазон ограничения тока – 0,01…3 А.

Основной особенностью схемы является возможность как изменения величины ограничения тока в нагрузке, так и возможность регулировки напряжения на выходе. Ограничение тока устанавливается переменным резистором R 5, а напряжение на выходе – переменным резистором R 6. Диапазон ограничения тока определяется сопротивлением датчика тока – резистором R2 .

При конструировании такого устройства стоит помнить, что на VT 4 выделяется достаточно большая мощность, поэтому для исключения вероятности перегрева элемента и выхода из строя он должен быть установлен на радиатор. Также отметим, что переменные резисторы R 5 и R 6 должны обладать линейной зависимостью регулировки для более удобного использования устройства. Возможные аналоги используемых деталей :

  • Транзисторы КТ815 ВD139,
  • Транзистор КТ814 ВD140,
  • Транзистор КТ803 2N5067.

Вместо заключения

Схема ограничителя тока

Нельзя утверждать, что тот или иной способ ограничения тока лучше или хуже. Каждый имеет свои достоинства и недостатки. Более того, применение каждого целесообразно или вовсе недопустимо в определенном конкретном случае. Например, применение плавкого предохранителя в выходной цепи импульсного блока питания в большинстве своем нецелесообразно, поскольку предохранитель как элемент защиты обладает недостаточным быстродействием. Говоря более простым языком – предохранитель может сгореть после того, как вследствие перегрузки придут в негодность силовые элементы блока питания.

В общем, выбор в пользу того или иного ограничителя должен производиться с учетом схемотехнических, а порой и конструктивных особенностей источника входного напряжения и особенностей нагрузки.

Параметры переменных резисторов

Основные параметры переменных и подстроечных резисторов

Переменные резисторы

Взглянем на переменный резистор… Что мы о нём знаем? Пока ничего, ведь мы ещё даже не знаем основных параметров этой весьма распространённой в электронике радиодетали. Так давайте же узнаем больше о параметрах переменных и подстроечных резисторов.

Подстроечный резистор СП3-29бМ

Для начала, стоит отметить то, что переменные и подстроечные резисторы являются пассивными компонентами электронных схем. Это значит, что они потребляют энергию электрической цепи в процессе своей работы. К пассивным элементам цепи также относят конденсаторы, катушки индуктивности и трансформаторы.

Параметров, за исключением прецизионных изделий, которые используются в военной или космической технике, у них не слишком много:

Номинальное сопротивление. Без сомнения, это основной параметр. Полное сопротивление может быть в пределах от десятков ом до десятков мегаом. Почему полное сопротивление? Это сопротивление между крайними неподвижными выводами резистора – оно не изменяется.

С помощью регулирующего ползунка мы можем менять сопротивление между любым из крайних выводов и выводом подвижного контакта. Сопротивление будет меняться от нуля и до полного сопротивления резистора (или наоборот – в зависимости от подключения). Номинальное сопротивление резистора указывается на его корпусе с помощью буквенно-числового кода (М15М, 15k и т.п.)

Рассеиваемая или номинальная мощность (мощность резистора). В обычной электронной аппаратуре используются переменные резисторы мощностью: 0,04; 0,25; 0,5; 1,0; 2,0 ватта и более.

Стоит понимать, что проволочные переменные резисторы, как правило, мощнее тонкоплёночных. Да это и не мудрено, ведь тонкая проводящая плёнка может выдержать куда меньший ток, чем провод. Поэтому о мощностных характеристиках можно ориентировочно судить даже по внешнему виду «переменника» и его конструкции.

Максимальное или предельное рабочее напряжение. Тут всё и так понятно. Это максимальное рабочее напряжение резистора, превышать которое не стоит. Для переменных резисторов максимальное напряжение соответствует ряду: 5, 10, 25, 50, 100, 150, 200, 250, 350, 500, 750, 1000, 1500, 3000, 8000 Вольт. Предельные напряжения некоторых экземпляров:

СП3-38 (а – д) на мощность 0,125 Вт – 150 В (для работы в цепях переменного и постоянного тока);

СП3-29а – 1000 В (для работы в цепях переменного и постоянного тока);

СП5-2 – от 100 до 300 В (в зависимости от модификации и номинального сопротивления).

Читать еще:  Блок регулировки вентилятора 220в

ТКС – температурный коэффициент сопротивления. Величина, показывающая изменение сопротивления при изменении температуры окружающей среды на 1°C. Для электронной аппаратуры, работающей в сложных климатических условиях, этот параметр очень важен.

Например, для подстроечных резисторов СП3-38 величина ТКС соответствует ±1000×10 -6 1/°C (с сопротивлением до 100 кОм) и ±1500×10 -6 1/°C (свыше 100 кОм). Для прецизионных изделий значения ТКС лежит в интервале от 1×10 -6 1/°C до 100×10 -6 1/°C. Понятно, что чем меньше величина ТКС, тем термостабильнее резистор.

Допуск или точность. Данный параметр аналогичен допуску у постоянных резисторов. Указывается в процентах %. У подстроечных и переменных резисторов для бытовой аппаратуры допуск обычно колеблется в пределах 10 – 30%.

Рабочая температура. Температура, при которой резистор исправно выполняет свои функции. Обычно указывается как диапазон: -45 … +55°C.

Износоустойчивость — число циклов передвижения подвижной системы переменного резистора, при котором его параметры остаются в пределах нормы.

Для особо точных и важных (прецизионных) переменных резисторов износоустойчивость может достигать 10 5 – 10 7 циклов. Правда устойчивость к ударам и вибрации у таких изделий ниже. Регулировочные резисторы более устойчивы к механическим воздействиям, но их износостойкость меньше, чем у прецизионных, от 5000 до 100 000 циклов. Для подстроечных эта величина заметно меньше и редко превышает 1000 циклов.

Функциональная характеристика. Немаловажным параметром является зависимость изменения сопротивления от угла поворота ручки или положения подвижного контакта (для ползунковых резисторов). Об этом параметре мало говорят, но он очень важен при конструировании звукоусилительной аппаратуры и других приборов. О нём и поговорим подробнее.

Дело в том, что переменные резисторы выпускаются с разными зависимостями изменения сопротивления от угла поворота ручки. Этот параметр называется функциональной характеристикой. Обычно её указывают на корпусе в виде буквы-кода.

Перечислим некоторые из этих характеристик:

Линейная. Это когда сопротивление меняется равномерно при повороте ручки на один и тот же угол. То есть при повороте ручки, например, на угол 10°, сопротивление меняется на 10 Ом. Повернули ещё на 10°, и сопротивление опять изменилось ровно на 10 Ом.

Поэтому такие резисторы имеют линейную или нормальную зависимость. Резисторы с линейной функциональной характеристикой можно применять, например, в качестве регулятора напряжения в самодельном блоке питания. В таком случае изменение выходного напряжения при регулировке будет равномерным, а шкала для прибора будет более удобной. На первом графике линейная характеристика обозначена буквой А.

Логарифмическая. Такую зависимость лучше всего показать на графике. На рисунке вы видите три графика зависимости сопротивления от угла поворота ручки.

Так вот буквой Б указана логарифмическая зависимость.

При повороте ручки резистора с логарифмической характеристикой, сопротивление сначала меняется ровно, но вот ближе к середине оно резко меняется, а затем, к концу поворота ручки опять изменяется более-менее ровно. Таким образом, мы видим, что изменение сопротивления происходит нелинейно (неравномерно), а по определённому, логарифмическому закону.

Показательная или обратно-логарифмическая. На рисунке выше график отмечен буквой – В. Показательную зависимость можно противопоставить логарифмической. Резисторы с такой характеристикой часто применяются в аудиоаппаратуре в качестве регуляторов громкости. Дело в том, что человеческое ухо с ростом громкости воспринимает звук тише (закон Вебера-Фехнера). Подробнее об этом можно прочесть здесь.

В результате если в качестве регулятора громкости поставить переменный резистор с линейной зависимостью, то шкала регулировки громкости будет нелинейной. На средней и большой громкости нам придётся выкручивать ручку регулятора на больший угол, чтобы ощутить значительное изменение уровня звука. Из-за этого возникает неудобство. Шкала у регуляторов громкости получается неравномерной, да и на разном уровне громкости ручку приходится крутить по-разному.

Поэтому в аудиоаппаратуре и применяются переменные резисторы с показательной зависимостью. Также в некоторых случаях могут применяться резисторы и с логарифмической зависимостью – всё зависит от схемотехнической реализации устройства.

Переменный резистор СП3-400ам с функциональной характеристикой А

Поэтому при подборе переменного резистора для самодельных электронных конструкций стоит обращать внимание и на функциональную характеристику!

Кроме указанных существуют и другие параметры переменных и подстроечных резисторов. Они в основном описывают электромеханические и нагрузочные величины. Вот лишь некоторые из них:

Разбаланс сопротивления многоэлементного переменного резистора;

Момент статического трения;

Шум скольжения (вращения);

Как видим, даже такая рядовая деталь обладает целым набором параметров, которые могут отразиться на качестве работы электронной схемы. Поэтому не забывайте о них.

Более детально о параметрах постоянных и переменных резисторов рассказано в справочнике «Резисторы».

голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector