Setting96.ru

Строительный журнал
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

6. 1. Расчет режимов ручной дуговой сварки (наплавки)

6.1. Расчет режимов ручной дуговой сварки (наплавки)

При ручной дуговой сварке (наплавке) к параметрам режима сварки относятся сила сварочного тока, напряжение, скорость перемещения электрода вдоль шва (скорость сварки), род тока, полярность и др.

Диаметр электрода выбирается в зависимости от толщины свариваемого металла, типа сварного соединения и положения шва в пространстве.

При выборе диаметра электрода для сварки можно использовать следующие ориентировочные данные:

В многослойных стыковых швах первый слой выполняют электродом 3–4 мм, последующие слои выполняют электродами большего диаметра.

Сварку в вертикальном положении проводят с применением электродов диаметром не более 5 мм. Потолочные швы выполняют электродами диаметром до 4 мм.

При наплавке изношенной поверхности должна быть компенсирована толщина изношенного слоя плюс 1–1,5 мм на обработку поверхности после наплавки.

Сила сварочного тока, А, рассчитывается по формуле:

где К – коэффициент, равный 25–60 А/мм; dЭ – диаметр электрода, мм.

Коэффициент К в зависимости от диаметра электрода dЭ принимается равным по следующей таблице:

Силу сварочного тока, рассчитанную по этой формуле, следует откорректировать с учетом толщины свариваемых элементов, типа соединения и положения шва в пространстве.

Если толщина металла S ≥ 3dЭ, то значениеIСВ следует увеличить на 10–15%. Если же S ≤ 1,5dЭ, то сварочный ток уменьшают на 10–15%. При сварке угловых швов и наплавке, значение тока должно быть повышено на 10–15%. При сварке в вертикальном или потолочном положении значение сварочного тока должно быть уменьшено на 10–15%.

Для большинства марок электродов, используемых при сварке углеродистых и легированных конструкционных сталей, напряжение дуги UД= 22 ÷ 28 В.

Расчет скорости сварки, м/ч, производится по формуле:

где αН – коэффициент наплавки, г/А ч (принимают из характеристики выбранного электрода по табл. 9 приложения); FШВ – площадь поперечного сечения шва при однопроходной сварке (или одного слоя валика при многослойном шве), см 2 ; ρ – плотность металла электрода, г/см 3 (для стали ρ =7,8 г/см 3 ).

Масса наплавленного металла, г, для ручной дуговой сварки рассчитывается по формуле:

где l – длина шва, см; ρ – плотность наплавленного металла (для стали ρ=7,8 г/см 3 ).

Расчет массы наплавленного металла, г, при ручной дуговой наплавке производится по формуле:

где FНП – площадь наплавляемой поверхности, см 2 ; hН – требуемая высота наплавляемого слоя, см.

Время горения дуги, ч, (основное время) определяется по формуле:

Полное время сварки (наплавки), ч, приближенно определяется по формуле:

где tO – время горения дуги (основное время),ч; kП – коэффициент использования сварочного поста, который принимается для ручной сварки 0,5 ÷ 0,55.

Расход электродов, кг, для ручной дуговой сварки (наплавки) определяется по формуле:

где kЭ – коэффициент, учитывающий расход электродов на 1 кг наплавленного металла (табл. 9 приложения).

Расход электроэнергии, кВт ч, определяется по формуле:

где UД– напряжение дуги, В; η– КПД источника питания сварочной дуги; WO–мощность, расходуемая источником питания сварочной дуги при холостом ходе, кВт; Т– полное время сварки или наплавки, ч.

Значения η источника питания сварочной дуги и WO можно принять по таблице:

Выбор и обоснование источника питания сварочной дуги может быть осуществлен по табл. 1–5 приложения.

Как правильно регулировать ток трансформатора в сварочном полуавтомате

Сварочный выпрямитель

Силовой

Одним из видов соединения и резки металлов является электросварка. Она выполняется при помощи сварочных аппаратов и электродов или специальной проволоки. Необходимая сила тока при этом зависит от диаметра электрода, вида работ — сварка или резка и толщины металла. Поэтому ее необходимо регулировать.

Несмотря на распространение новых, инверторных, аппаратов, у многих людей в гаражах и сараях остались старые устройства, которые нуждаются в ручной регулировке. Ее нельзя производить так же, как регулировать ток трансформатора в сварочном полуавтомате или инверторе, в которых эту работу выполняет электроника.

Устройство и принцип действия сварочного трансформатора

Трансформатор для электросварки, как и любой другой, состоит из трех основных элементов:

  • Первичной обмотки. На нее подается напряжение. В домашних аппаратах катушка подключается к сети 220В, на производстве для уменьшения потребляемого тока на нее подается 380В.
  • Вторичная обмотка с напряжением 45-110В. К ней подключается электрод и масса, а в сварочных выпрямителях диоды или диодный мост.
  • Магнитопровод. Это сердечник, на котором наматываются катушки. Состоит из большого количества пластин трансформаторного железа и может быть тороидальной, прямоугольной и Ш-образной формы.

Устройства большой мощности дополнительно оснащаются пусковой и защитной аппаратурой, а также вентиляторами.

Есть три режима работы трансформаторов:

  • Режим холостого хода. В нем аппарат работает при перерыве в процессе сварки.
  • Рабочий режим. Это сварка или резка металла.
  • Режим короткого замыкания. Появляется при залипании электрода.

Регулировка тока сварочного трансформатора производится в рабочем режиме.

Основным недостатком такого аппарата является переменное выходное напряжение. Это дает возможность использовать только углеродистые электроды и сваривать только обычный металл. Для сварки нержавеющих и высоколегированных сталей необходимы специальные электроды и использование сварочного выпрямителя.

Информация! В отличие от обычных трансформаторов, у сварочных аппаратов рабочий режим похож на режим короткого замыкания. Поэтому для уменьшения нагрева они мотаются проводом большего сечения.

Сварочный выпрямитель

Использование постоянного напряжения дает более качественный шов. Она позволяет кроме обычных видов обработки выполнять аргонно-дуговую сварку и другие виды работ.

Информация! Такие устройства кроме однофазных изготавливают трехфазные. Это увеличивает мощность с распределением нагрузки на три фазы и обеспечивает более «гладкое» выходное напряжение, без пульсаций.

Сварочные выпрямители различают по типу установленных выпрямительных блоков:

  • С двумя диодами. Вместо одной вторичной обмотки мотаются две и диоды подключаются по схеме с общей средней точкой.
  • С обычным диодным мостом. В однофазных аппаратах устанавливается обычный мост, из четырех диодов, в трехфазных — мост Ларионова, из шести.
  • Транзисторные. Редко встречаются из-за слишком мощных выходных транзисторов.
  • Тиристорные. Разновидность диодных аппаратов, но вместо диодов устанавливаются тиристоры и система управления. Регулировка осуществляется за счет изменения угла открытия тиристора и действующего значения напряжения.
  • Инверторные. Современные электронные аппараты индивидуального использования. Ток регулируется ручками управления или кнопками, расположенными на передней панели.

Эти трансформаторы изготавливаются разной мощности и предназначенные для подключения различного количества постов:

  • Однопостовые. Используются только одним сварщиком. Регулировка осуществляется как на рабочем месте, так и внутри аппарата. Вольтамперная характеристика может быть крутопадающей (мягкой), пологопадающей (жесткой), а также переключаемой.
  • Многопостовые. Имеют достаточную мощность для подключения нескольких (до 9) постов. Характеристика только жесткая, регулировать процесс сварки можно только на рабочем месте при помощи балластных сопротивлений.
Читать еще:  Редуктор для регулировки давления воды бытовой

Сварочный полуавтомат

Полуавтомат состоит из двух основных узлов:

  • Блок подачи проволоки. Подает проволоку в зону сварки, дополнительно оснащается устройством подачи защитного газа.
  • Устройство питания дуги. В качестве него используются сварочный выпрямитель или инвертор.

Справка! Ток полуавтомата регулируется в устройстве, питающем дугу.

Параметры аппаратов

Основными параметрами являются выходные ток и напряжение, а так же динамическая характеристика.

Выходной ток и напряжение

Основным параметром аппарата для сварки является выходной ток. От него зависит диаметр электродов и толщина металла. В индивидуальных аппаратах он достигает 200А. Поскольку выходное напряжение имеет значение только при зажигании дуги, в современных инверторных устройствах для уменьшения потребляемой мощности и габаритов выпрямителя этот параметр максимально снижен, а поджиг дуги обеспечивается дополнительными встроенными устройствами.

Выходное напряжение в однопостовых аппаратах составляет 45-65В. В больших аппаратах, рассчитанных на одновременную работу нескольких сварщиков, выходное напряжение может достигать 110В.

Динамическая характеристика

При изменении расстояния от конца электрода до детали меняется длина дуги и ее сопротивление. Поэтому не менее важной является динамическая, или вольт амперная характеристика — зависимость тока от длины дуги:

Крутопадающая, или мягкая. При росте тока в устройстве с такой характеристикой падает напряжение, что ограничивает его рост. Это обеспечивает более стабильную дугу при изменении расстояния до детали. В самодельных аппаратах небольшой мощности мягкая характеристика обеспечивается внутренним устройством — первичная и вторичная обмотки намотаны на разных частях магнитопровода. За счет особенностей конструкции без добавочных сопротивлений они могли работать с электродами определенного, для каждого аппарата своего, диаметра. В устройствах большей мощности динамическую характеристику смягчают балластные сопротивления. Эти методы могут совмещаться.

Пологопадающая, или жесткая характеристика. При жесткой характеристике напряжение не меняется, а ток, соответственно меняется при изменении длины дуги. Такие параметры имеют большие много постовые аппараты или автоматические устройства, поддерживающие постоянное расстояние между электродом и деталью.

Регулировка сварочного аппарата

Есть разные способы управления током сварочного аппарата.

С подвижными обмотками и сердечником

Жесткость характеристики зависит от магнитной связи между первичной и вторичной катушками. Для ее изменения необходимо поменять расстояние между первичной и вторичной обмотками или величину воздушного зазора в магнитопроводе. Для этого сердечник или катушку крепят на специальной гайке, а винт оснащается рукояткой. При ее вращении гайка накручивается и подвижная часть меняет свое положение, что приводит к изменению тока.

Этот способ применяется в аппаратах переменного напряжения, а также дополнительно оснащенных диодными мостами.

Подмагничивание сердечника постоянным напряжением

Еще одним способом управления является подмагничивание сердечника постоянным напряжением. Намагниченный сердечник увеличивает сопротивление магнитному потоку, созданному первичной обмоткой. Это уменьшает ток дуги.

Интересно! На аналогичном принципе основана работа магнитного усилителя. Это устройство применялось в системах управления электроприводом до появления тиристорных преобразователей.

Балластные сопротивления

Одним из самых распространенных и простых способов регулировки является использование балластного сопротивления:

  • Активный балластник. Представляет из себя несколько проволочных или ленточных сопротивлений, которые переключаются при необходимости изменить ток электросварки. Используются с аппаратами всех типов. В самодельных устройствах малой мощности вместо комплекта сопротивлений используется спираль или змейка из нихрома.
  • Индуктивный балластник. Это дроссель, индуктивность которого может меняться при необходимости изменением числа витков или величиной воздушного зазора в магнитопроводе. Устанавливается последовательно со вторичной обмоткой до диодного моста.

Тиристорное управление

Эта регулировка применяется в выпрямителях, в которых часть или все диоды заменены тиристорами. При изменении угла открывания меняется действующее значение напряжения и ток устройства. Управление углом осуществляется переменными резисторами или более сложными схемами.

Недостатком этой схемы является превращение постоянного напряжения в пульсирующее, что ухудшает качество шва.

Важно! При угле открытия более 90° падает амплитудное значение, что ухудшает процесс зажигания дуги.

Регулировка первичной обмотки

Регулировка токов сварочного трансформатора по первичке осуществляется тиристорным ключом — двумя тиристорами, включенными встречно-параллельно при помощи переменного резистора, соединяющего управляющие вывода или небольшой транзисторной схемы.

Регулировка тиристорным ключом первичек позволяет управлять аппаратами переменного напряжения.

Все эти способы регулировки теряют свое значение вместе со старыми аппаратами и распространением новых, инверторных. Они экономичнее, легче, а некоторые магазины предлагают обменять старый катушечный сварочник на новый. Но пока старые устройства находятся в эксплуатации знание того, как же регулируется сварочный ток в трансформаторе позволит выполнять сварочные работы более качественно.

Как варить электродом: основные правила сварки металлических конструкций для новичков

Сварка металлических конструкций применяется в строительной отрасли, незаменима она и в быту. Практически в любой сфере найдется немало работ, требующих сварки металла. Отсутствие опыта и необходимых знаний – не повод отказываться от приобретения навыка, освоить азы электросварки пол силу даже новичкам. Научиться варить электродом не так сложно, как это может показаться на первый взгляд. Главное, изучить технологию проведения сварочных работ и все время практиковаться.

Подготовительный процесс

Прежде чем приступить к сварочным работам, следует подобрать тип оборудования, средства защиты и расходные материалы.

Существует два вида сварочных аппаратов, используемых в быту: инвертор и трансформатор.

  1. Инвертор вызывает дугу постоянным током, он используется сварщиками чаще, чем трансформатор. Аппарат вызывает стабильную дугу, которая не «скачет». Легкий вес, компактность и бесшумная работа – дополнительные преимущества инверторного оборудования.
  2. Трансформатор варит переменным током, управлять его дугой сложнее. Кроме того, трансформатор оказывает негативное влияние на сеть, из-за чего могут возникать скачки напряжения. Тяжелый и громоздкий аппарат – не лучший вариант для начинающих сварщиков.

Инвертор без электродов – совершенно бесполезный аппарат. Электроды бывают разные, для первого раза лучше выбирать универсальные стержни толщиной 3 мм и 4 мм. Диаметр электродов производители указывают на упаковке, поэтому выбор будет сделать несложно.

После приобретения расходников следует позаботиться о средствах защиты. Маска сварщика – обязательный атрибут, без которого работать категорически запрещено. Маска защитит сварщика от брызг. Для проведения сварочных работ лучше выбирать маску со светофильтром, изделие защитит глаза от вредного излучения.

Спецодежда, обувь и перчатки сварщика должны защищать от удара током, лучше всего, если одежда будет изготовлена из ткани с огнеупорной пропиткой.

В перечень обязательных инструментов сварщика входит: молоток для сбивания окалины, металлическая щетка для удаления ржавчины, тиски, зажимы, магнитные уголки.

Технология проведения работ

Процесс электросварки проходит под воздействием высоких температур. В результате на поверхности заготовки образуется так называемая сварочная ванна, полость которой заполняется расплавленным металлом. После заполнения ванны на поверхности остается сварочный шов. Приступая к работе, сварщик должен зажечь электродную дугу, далее расплавить металл на заготовке и заполнить им сварочную ванну. На первый взгляд, процесс может показаться простым и легким, но без определенных навыков варить электродом очень сложно.

Читать еще:  Как отрегулировать температуру в системе отопления

Начинающий сварщик должен знать скорость горения электрода и отличать шлак в процессе сварки. Не менее важно сохранять равномерную скорость в работе и выполнять правильные движения электродом. Сделать ровный и надежный шов, который способен выдержать нагрузку на разрыв, сможет далеко не каждый ученик и не с первого раза.

  1. Настройка сварочного инвертора

Перед началом проведения работ недостаточно просто подключить сварочный инвертор, необходимо еще настроить требуемые значения тока. Аппарат подключается в строгой последовательности, которая зависит от того, какой толщины металл нужно будет варить.

При сварке тонкого металла (2 мм), оборудование подключают в обратной последовательности. Схема при этом следующая: держатель электрода подсоединяют к клемме со знаком «+», кабель с массой подключают к свариваемому металлу. При сварке металла толщиной 6 мм и более инвертор подключают в обратном порядке.

Приступая к работе, необходимо выставить силу тока. Значение тока выставляется в зависимости от толщины металла и диаметра электрода. Таблицы значений можно найти в интернете, с этим нет никаких проблем.

  1. Дуга и направление движения электрода

Зажечь дугу можно двумя способами – касанием поверхности электродом и его отведением вверх на 3 мм, или, ведением стержнем по металлу в сторону места сварки (без отрыва электрода от поверхности). Второй способ больше подходит новичкам, т.к. после кратковременного контакта с металлом электрод нагревается, и работать с ним в дальнейшем становится проще.

После появления дуги держать стержень следует как можно ближе к заготовке, расстояние между электродом и свариваемой поверхностью должно быть одинаковым в течение всего процесса сварки.

Направление электрода – отдельная тема, существует множество способов ведения стержня по поверхности заготовки. Сварку ведут зигзагообразными движениями, елочкой, треугольником и т.д. Выбор направления движения электродом зависит от типа заготовки, ее толщины и других факторов. Наиболее популярные способы сварки у новичков – сварка елочкой и зигзагом.

Главное в работе не забывать выдерживать угол наклона (примерно 70 градусов) и выдержать стабильное расстояние между кончиком электрода и поверхностью. В конце сварки следует заварить кратер, для этого необходимо остановиться в конце шва и медленно разорвать дугу.

  1. Скорость сварки

Скорость при проведении сварочных работ имеет большое значение. Чем тоньше металл, тем выше должна быть скорость сварки. При медленной работе существует риск получить ожог. При медленной сварке шов получается толстым, с сильно оплавленными краями. Быстрая сварка характеризуется наличием тонкого шва, края которого часто выглядят неровными. Обе техники сварки позволяют добиться нужного результата, уменьшить или увеличить ширину шва, а также изменить другие его параметры.

Техничка безопасности

Приступая к работе, не следует забывать о технике безопасности. Защита глаз и открытых участков тела – обязательное условие при работе с электросваркой. Сварщик должен работать в прорезиненной обуви и перчатках, чтобы исключить риск удара током. Нельзя варить сваркой на улице в дождливую погоду. Также следует избегать мест, в которых находятся емкости для топлива, газа и другие взрывоопасные предметы.

Ручная электродуговая сварка

Режимы ручной сварки. Для получения качественного сварного шва нужно правильно выбрать режим сварки, определяемый диаметром электрода, величиной сварочного тока и длиной дуги.

Диаметр электрода выбирают в зависимости от толщины металла и типа сварного соединения. При этом можно руководствоваться ориентировочно следующими данными:

Толщина металла, мм

Диаметр электрода, мм

Величина сварочного тока зависит от толщины свариваемого металла, типа соединения, скорости сварки, положения шва в пространстве, толщины и вида покрытия электрода, его диаметра. Практически величину сварочного тока при сварке электродами из малоуглеродистой стали можно определять по формуле

где d — диаметр электрода, мм.

Величина сварочного тока влияет не только на глубину провара, но и на форму шва. При ширине шва, равной 3—4 диаметрам электрода, форма шва наиболее благоприятна.

Длина дуги существенно влияет на качество шва: чем короче дуга, тем выше качество наплавленного металла. Длину дуги определяют по формуле

где d — диаметр электрода, мм.

Обычно сварку ведут при токах свыше 50 А. При величине сварочного тока более 100 А напряжение горения дуги зависит только от длины дуги и определяется по формуле

где α — коэффициент, характеризующий падение напряжения на электродах (при стальных электродах α = 10/12, при угольных α = 35/38; β — коэффициент, характеризующий падение напряжения на 1 мм длины столба дуги; β = 2,0—2,5.

Напряжение зажигания дуги для постоянного тока равно 40—60 В; для переменного 50—70 В.

Производительность сварки зависит от затрачиваемого времени и диаметра электрода. Полное время определяют по формуле

где t — основное время горения дуги, ч; — коэффициент загрузки сварщика, равный 0,4—0,8 в зависимости от вида производства и характера выполняемой работы.

Основное время горения дуги можно определить по формуле

где Q — количество наплавленного металла, г; I — сварочный ток, A; H — коэффициент наплавки, т. е. количество электродного металла в граммах, наплавленное в течение I ч, приходящееся на 1 А сварочного тока с учетом марки электрода, потери металла на угар и разбрызгивание; для тонкообмазанных электродов H = 7—8 г/А×ч, а для толстообмазанных H = 10—12 г/А×ч и выше.

Массу наплавляемого металла определяют по формуле

где P — коэффициент расплавления (8—14 г/А×ч); I — сварочный ток, А.

где L — длина шва, м.

Расход электродов (на угар, разбрызгивание и огарки) составляет до 25% всей массы электродов. Расход электроэнергии при ручной сварке на постоянном токе составляет 7—8 кВт×ч/кг, а на переменном — 3,5 кВт×ч/кг наплавленного металла.

Оборудование рабочего места для ручной сварки состоит из сварочного аппарата постоянного или переменного тока, сварочного стола, стеллажа, предохранительного щитка, электродержателя и различных сборочно-сварных приспособлений. Рабочий пост сварщика находится в изолированной кабине, снабженной приточно-вытяжной вентиляцией.

Техника ручной сварки. Дугу можно возбудить двумя способами: прикосновением торца электрода к свариваемому изделию с последующим его отводом на расстояние 3—4 мм; быстрым боковым движением электрода по направлению к свариваемому изделию с последующим отводом (подобно зажиганию спички). Прикосновение электрода к изделию должно быть кратковременным: иначе он приваривается к изделию.

Длина дуги значительно влияет на качество сварки. Короткая дуга горит устойчиво и обеспечивает получение высококачественного сварного шва, так как расплавленный металл быстро проходит воздушный промежуток и меньше окисляется и азотируется. Для правильного формирования шва при сварке плавящимся электродом его необходимо держать наклонно по отношению к поверхности свариваемого металла (под углом 15—20° от вертикали). Изменяя угол наклона электрода, можно регулировать глубину расплавления основного металла и влиять на скорость сварки и охлаждения наплавленного металла.

Читать еще:  Регулировка цветов монитора nvidia

При сварке тонких листов накладывают шов в виде узкого валика (шириной 0,8—1,5 диаметра электрода). При сварке толстых листов применяют уширенные валики. При таких швах конец электрода совершает три движения: поступательное вдоль оси электрода, поступательное вдоль линии шва и поперечно-колебательные движения. Последние улучшают прогрев кромок шва, замедляют остывание ванны наплавленного металла, устраняют непровар и обеспечивают получение однородного шва. Схема различных колебательных движений конца электрода показана на рис. 1.

Схема движения электрода при ручной электродуговой сварке

Рис. 1. Схема движения электрода при ручной электродуговой сварке

Сварку встык без разделки кромок (рис. 2, а) производят преимущественно сквозным проплавлением с одной стороны шва. В этих случаях рекомендуется применять подкладки (стальные, медные). Иногда, если возможно, шов подваривают узким валиком с обратной стороны.

При сварке встык шва с V-образной разделкой (рис. 2, б, дугу зажигают вблизи скоса кромок и наплавляют валик металла. В зависимости от толщины листа и диаметра электродов шов выполняют за один или несколько проходов.

При многослойной сварке каждый слой тщательно очищают. Число слоев определяют исходя из диаметра электрода. Толщина слоя равна (0,8/1,2)dэл.

Для сварки Х-образных швов (рис. 2, е) с целью уменьшения деформации слои накладывают попеременно с обеих сторон разделки.

При образовании углового шва (рис. 2, г, д) электрод ставят под углом 45° к поверхности детали. Применяя повышенные величины тока (во избежание непровара шва), обе свариваемые поверхности наклоняют к горизонтальной плоскости под углом 45° (сварка в лодочку, рис. 2, е).

Схема наложения валиков для стыковых и угловых швов

Рис. 2. Схема наложения валиков для стыковых и угловых швов

При сварке горизонтальных швов на вертикальной плоскости (рис. 3, а) разделку дают лишь верхнему листу, дугу возбуждают на нижней кромке, затем постепенно переходят на скошенную верхнюю кромку.

Вертикальные швы сваривать труднее вследствие стекания расплавленного металла вниз. Для уменьшения стекания металла работу ведут короткой дугой и в направлении снизу вверх (рис. 3,6), за исключением листов с толщиной до 1,5 мм.

Сварку потолочных швов (рис. 3, в) производят очень короткой дугой (короткое замыкание электрода на деталь). Применяют электроды с тугоплавкой обмазкой, которая образует вокруг электродов «втулочку», содержащую направленный газовый поток, удерживающий электродный металл.

Схематическое изображение работы при сварке различных швов

Рис. 3. Схематическое изображение работы при сварке различных швов: 1, 2. 3 — положение Электрода; 4 — обмазка

Увеличение длины дуги до 6—10 мм не оказывает заметного влияния на качество сварного шва. При сварке угольным электродом на постоянном токе прямой полярности расход этого электрода незначителен; при работе на обратной полярности может происходить науглероживание металла.

Для изделий с отбортованными кромками при толщине листов 3 мм сварку угольным электродом производят без присадочного материала, а для изделий из листов толщиной более Змм — с подачей присадочного прутка в дугу.

Кроме дуги прямого действия можно пользоваться дугой косвенного действия. В этом случае применяют два угольных электрода, укрепленных в специальном держателе.

Производительность сварки угольным электродом без присадки металла при толщине стали 1—3 мм достигает 50—60 м/ч. Диаметр угольного электрода изменяется в пределах 10—25 мм при величине тока 200—600 А.

Прогрессивные методы ручной сварки. Применение новых скоростных методов позволяет повысить коэффициент использования сварочного поста и резко увеличить производительность ручной сварки. Важнейшими технологическими приемами скоростной сварки являются: сварка с глубоким проплавленном, сварка спаренным электродом, пучком электродов, многоэлектродная сварка, сварка трехфазной дугой лежачим электродом и т. д.

Сварка глубоким проплавлением (проваром) (рис. 4, а) повышает производительность на 150—200%. Электроды покрывают качественным покрытием 1 (обмазкой) с более высокой температурой плавления, чем у металла электродного стержня 2. Расплавившийся металл 3 находится внутри сбмазки 4, имеющей вид конусной втулочки, опирающейся на поверхность свариваемого изделия 5. Эта втулочка предохраняет от короткого замыкания, облегчает ведение процесса, позволяет лучше использовать тепло дуги и обеспечивает более глубокий провар.

При сварке спаренным электродом два Электрода соединяют вместе так, чтобы один оказался длиннее другого на 30—40 мм; к длинному стержню подводят ток. Затем на электроды наносят общий слой покрытия (обмазки). Дуга образуется между длинным стержнем и изделием, а короткий стержень расплавляется за счет избыточного тепла дуги.

Разновидностью сварки спаренным электродом является сварка пучком электродов (3—4 шт.). При определении величины тока принимается суммарный диаметр пучка электродов, т. е.

Схема сварки пучком электродов показана на рис. 4, б. При возбуждении дуги ток сначала проходит через первый электрод, затем через второй, третий и т. д.

Разновидностью этого спогоба является многоэлектродная наплавка блуждающей дугой (рис. 4, в). Несколько электродов собирают в один ряд в виде частой гребенки. Ток подводят одним полюсом к изделию, а другим ко всем электродам. Дуга под слоем флюса перемещается от одного электрода к другому или одновременно горит от нескольких электродов; при этом основной металл проплавляется незначительно. В процессе сварки электроды и флюс подают автоматически.

Сварка трехфазной дугой (рис. 4, г) по сравнению со сваркой однофазной дугой повышает производительность в два-три раза, уменьшает расход электроэнергии примерно на 25% и обеспечивает более глубокий провар свариваемых изделий. Первые две фазы источника тока 1 подключают отдельно к двум параллельным электродам 2, имеющим толстую обмазку; третью фазу подключают к изделию 3. При замыкании образуются три дуги 4. Они обеспечивают стабильность и надежность процесса сварки.

Скоростные методы ручной спарки

Рис. 4. Скоростные методы ручной спарки: а — сварка глубоким проваром; б — сварка пучком электродов; в — многоэлектродная сварка под слоем флюса; г — сварка трехфазной дугой; д — сварка лежачим электродом: 1 — сварка в стык одним электродом; 2 — сыарка в стык пучком электродов; 3 — сварка таврового соединения

К скоростным методам можно отнести сварку лежачим электродом (рис. 4, д). Электрод с качественным покрытием или пучок электродов укладывают в разделку кромок деталей при стыковом соединении 1, 2 или в угол при тавровом соединении 3. Сварку лежачим электродом можно вести на постоянном и переменном токе, но лучшие результаты дает сварка на постоянном токе прямой полярности. Ток подводят к электроду и изделию.

голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector