Setting96.ru

Строительный журнал
24 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

2. 7. 6. Тиристорные трансформаторы Общее устройство тиристорных трансформаторов

2.7.6. Тиристорные трансформаторы Общее устройство тиристорных трансформаторов

Тиристорным трансформатором принято называть комбинацию собственно трансформатора и полупроводникового коммутатора с фазным управлением, рис. 2.17. Они относятся к последнему поколению сварочных трансформаторов. Промышленное использование их стало возможным вместе с широким внедрением силовых полупроводниковых элементов в сварочной технике. Блок-схема простейшего тиристорного трансформатора приведена на рис. 2.17 собственно трансформатор служит для понижения сетевого напряжения необходимого для сварки, а также может использоваться для получения необходимой формы внешней характеристики и настройки режима сварки. Две последние функции — формирование формы внешней характеристики и настройка параметров режима могут выполняться полупроводниковым фазовым коммутатором. В качестве коммутирующих элементов используются силовые управляемые полупроводниковые вентили — тиристоры, соединенные встречно параллельно. Фазовый коммутатор может устанавливаться как в цепи вторичной обмотки трансформатора, так и в цепи первичной обмотки (рис. 2.18). В состав коммутатора входят: блок задания БЗ, с помощью которого устанавливается необходимое значение сварочного тока или напряжения; блок фазового управления (БФУ), формирующий сигнал для включения коммутирующих вентилей.

Прямокутник 259

Рис. 2.17. Блок-схема тиристорного трансформатора

Рис. 2.18. Схема (а) осциллограмма электрических параметров нагрузки (б) тиристорного трансформатора с прерывистым питанием

При больших коэффициентах усиления управляемых вентилей электрическое управление трансформатором выполняется с помощью блоков БЗ и БФУ, собранных на слаботочных полупроводниковых элементах. Это придаёт трансформатору множество ценных свойств. При электрическом способе задания параметров режима у трансформатора отсутствуют силовые подвижные части, сокращаются размеры регулирующих устройств, легко осуществляется дистанционное задание параметров режима и ввод программного управления ими, с помощью обратных связей формируется внешняя характеристика.

Задание параметров режима в тиристорном трансформаторе

Коммутатор обычно собирается из двух встречно-параллельных тиристоров V1 — V2 (см. рис.2.18, а) Один из тиристоров проводит ток в один полупериод, другой во второй полупериод. По тиристорам проходит выпрямленный ток, а в цепи нагрузки — переменный, рис. 2.18, б. Коммутатор вместе со схемой управления представляет собой фазовый регулятор. Управление током нагрузки основано на преобразовании синусоидального тока в знакопеременные импульсы, амплитуда и длительность которых определяется углом (фазой) включения тиристоров. Настройка величины тока осуществляется за счет изменения напряжения холостого хода трансформатора, так как при изменении угла включения тиристоров изменяется действующее значение его выходного напряжения. При таком управлении трансформатора режим горения дуги прерывистый.

Фазовое управление обладает всеми достоинствами электрического управления (малые габариты, плавность регулирования, универсальность и т.д.), но имеет недостатки. Главный из них заключается в снижении устойчивости горения дуги переменного тока. В интервале времени t — t1 дуга не горит и межэлектродный промежуток остывает. это затрудняет повторное зажигание дуги. Чем больше угол a, тем устойчивость горения дуги ниже. Этим недостаток устраняется следующими способами: введением цепи подпитки дуги, либо подачей импульса на дуговой промежуток в момент t1 с помощью импульсного стабилизатора. В первом случае дуга имеет непрерывное питание и горит без перерывов, а во втором — питание дуги — прерывистое, т.е. дуга горит с перерывами. Соответственно различают конструкции трансформаторов с подпиткой дуги, либо с прерывистым питанием дуги. В трансформаторах с подпиткой дуги фазовый регулятор включен во вторичную цепь, но он может быть включен и в цепь первичной обмотки. Для заполнения бестоковых интервалов в интервале проводимости тиристоров использована специальная цепь, называемая цепью подпитки дуги, по которой проходить минимальный ток необходимый для непрерывного горения дуги. В бестоковые интервалы тиристоров ток подпитки подбирается таким образом, чтобы при U трансформатора равного 70 В ток подпитки для аргонодуговой и ручной дуговой сварки составлял 10. 15 А, а для автоматической сварки под флюсом — 20. 30 А.

На рис. 2.18, а приведена схема тиристорного трансформатора с прерывистым питанием дуги. Фазовый регулятор V1-V2 включен в цепь первичной обмотки. Принцип настройки режима этого трансформатора остается прежним. В бестоковые промежутки времени происходит быстрая деионизация дугового газа. Для надежного повторного возбуждения дуги в конструкции трансформатора предусмотрено устройство, облегчающее повторное возбуждение дуги — импульсный стабилизатор горения дуги. Он состоит из конденсатора С и дополнительной импульсной обмотки ИО, которая подключена к первичной сети и намотана сверху вторичной обмотки трансформатора. Её магнитный поток направлен согласно первичной обмотки.

При включении любого из тиристоров конденсатор заряжается до амплитудного значения питающего напряжения. Время зарядки конденсатора близко к нулю, т.е. зарядный ток протекает практически мгновенно. Он проходит по импульсной обмотке, трансформируется во вторичную цепь силового трансформатора ТC и вызывает в дуговом промежутке импульс напряжения Uис, необходимого для повторного возбуждения дуги (рис. 2.18 ). Время прохождения импульса 20. 100 мкс. По окончанию периода проводимости тиристора дуга гаснет, и конденсатор разряжается на первичную обмотку ТC. В следующий полупериод сетевого напряжения включается второй тиристор коммутатора, конденсатор заряжается противоположной полярностью. Его зарядный ток вызывает стабилизирующий импульс и обеспечивает повторное возбуждение дуги в противоположном полупериоде. Параметры стабилизирующего импульса подбираются емкостью конденсатора и соотношением витков импульсной и вторичной обмотки ТC. Ёмкость конденсаторов для токов 1000. 2000 А составляет 10 мкФ, а в трансформаторах для РДС на токи 300. 500 А — 2 мкФ. По этому принципу построены трансформаторы типа ТДФЖ — 1002 и ТДФЖ — 2002.

Диодно-тиристорный выпрямитель со схемой управления для сварочного аппарата

В различных изданиях попадались публикации на данную тему, но положительного результата добиться не удавалось. Дело в том, что если просто подключить к трансформатору диодный или диодно-тиристорный выпрямитель, на выходе получается напряжение с пульсацией 100 Гц. При сварке электродом для постоянного тока это достаточно много. В результате дуга нестабильна и постоянно срывается. Не помогает и установка в разрыв вторичной цепи сглаживающего дросселя. Но когда сварочный аппарат стоит в холодном гараже или под навесом на улице, где температура воздуха зимой опускается до -15. -25°С, и необходимо срочно что-то приварить, достаточно сложное электронное устройство начинает давать сбои.

Поэтому была собрана более простая схема выпрямителя, которая неплохо показала себя даже в зимний период.

Содержание / Contents

↑ Схема

Устройство (рис.1) состоит из сварочного трансформатора (промышленного или самодельного), диодно-тиристорного выпрямителя со схемой управления, сглаживающего конденсатора С1 и дросселя L1.

Читать еще:  Регулировка напряжения при помощи транзистора

Фактически — это простой регулятор мощности. Так как питание схемы управления стабилизировано, установленное значение сварочного тока поддерживается довольно стабильно. Из-за наличия в схеме фильтрующих элементов С1 и L1, пульсаций напряжения на выходе практически нет. Дуга держится надежно, и качество шва получается высоким. Схема управления — это фазоимпульсный генератор на аналоге однопереходного транзистора, собранный на двух транзисторах разной проводимости. Питается от вторичной обмотки сварочного трансформатора Т1 через диодный мост VD1 и стабилизатор, образованный стабилитронами VD2, VD3. Их можно заменить одним на соответствующее напряжение стабилизации. Резистор R1 ограничивает ток, протекающий через стабилитроны. В зависимости разных выходных напряжений сварочных трансформаторов приходится подбирать R1 для оптимального тока стабилизации стабилитронов VD2, VD3 и устойчивой работы фазоимпульсного генератора.
Переменным резистором R2 производится регулировка сварочного тока. Он изменяет время заряда конденсатора С1 до напряжения открывания ключа на транзисторах VT1 и VT2.
При желании расширить диапазон регулировки тока (в меньшую сторону), увеличивается сопротивление R2 до 100 kOm. Управление мощными тиристорами VS1, VS2 , производится с помощью
маломощных VS3 и VS4, которые, в свою очередь, запускаются генератором через импульсный трансформатор T2.

↑ Конструкция и детали

В моем варианте выпрямитель с регулятором выполнен отдельным блоком и присоединяется к сварочному аппарату гибкими перемычками примерно 0,5 м длиной. Это более удобно, так как не надо переделывать уже готовый сварочный аппарат, к тому же, можно варить как постоянным, так и переменным током. При таком исполнении выпрямительный блок можно подключать к любому сварочному трансформатору. Диоды и тиристоры установлены на отдельных ребристых радиаторах (рис.2).

Все соединительные перемычки выполнены многожильным медным проводом с контактными клеммами на концах под болтовое соединение. Электронная схема управления выполнена на печатной плате (рис.3), хотя и объемный монтаж, собранный качественно, ничуть не хуже.

Импульсный трансформатор Т2 — марок ТИ-3; ТИ-4; ТИ-5, с коэффициентом трансформации 1:1:1. Его можно намотать самому на ферритовом кольце, например, 32x20x6 МН2000. Все обмотки содержат по 100. 150 витков медного обмоточного провода марки ПЭВ, ПЭЛШО 0,25. 0,3 мм. Перед намоткой сердечник необходимо обмотать слоем лакоткани. Конденсатор С1 набран из 4 конденсаторов по 15000 мкФ с рабочим напряжением не менее 80В. Так как при замыкании и размыкании сварочной цепи и при горящей дуге токи подпитки, протекающие через конденсаторы, очень велики, то соединять конденсаторы необходимо по схеме «звезда» (от одной соединительной клеммы идут 4 провода на вывод «+» каждого конденсатора, и от второй клеммы — также 4 провода на вывод «-» конденсаторов). Сечение каждого провода выбрано таким, чтобы суммарное сечение всех 4 проводов было не меньше сечения питающих силовых кабелей.

При недоборе емкости кондесатора С1, 44000 мкф (два импортных по 22000 мкф на 90 в,) при работе аппарата кондесаторы греются от увеличенных токов (заряд-розряд), при четырех импортных по 22000 мкф на 90 в, при очень длительной работе в режиме сварки немного теплые. Практика показала, что С1 лучше работает из большего количества кондесаторов меньшей емкости.

Дроссель намотан на сердечнике площадью 20. 30см2, с немагнитным зазором 0,5. 1 мм. Количество витков может быть от 25 до 60. 80. Чем больше витков, тем лучше, но ухудшается отвод тепла от внутренних слоев обмотки. Провод для намотки должен иметь сечение, не меньшее площади сечения провода, которым намотана вторичная обмотка трансформатора. Это касается и всех перемычек, которыми сделаны соединения силового блока.

Сварочный ток может достигать 100. 180А, в зависимости от мощности сварочного трансформатора. Это надо учитывать при монтаже.
При болтовом соединении надо соблюдать правило: сварочный ток не должен протекать через болт, если, конечно, он не медный или латунный. Это в основном касается входных и выходных клемм. Один из вариантов, как можно сделать, показан на рис.4.

Корпус выпрямителя желательно изготовить из негорючего материала, но можно даже из фанеры, если позволяет объем и отступить подальше от нагревающихся радиаторов.
В корпусе обязательны вентиляционные отверстия. Ручка регулятора тока устанавливается на корпусе, и вокруг наносится шкала с делениями — для более удобной установки тока. Для удобства регулировки рабочего тока я установил контрольную лампочку накаливания 110 в минимальной мощности по степени которой я ориентировался при установке тока сварки. В качестве предохранителя в первичной цепи трансформатора используется автомат на соответствующий рабочий ток.
Вентилятор для принудительного охлаждения необходимо использовать с достаточно приличной по размерам крыльчаткой. Все это создает условия для безопасной, более надежной работы устройства.

Регулятор напряжения на тиристоре своими руками

Регулятор напряжения на тиристоре

В быту очень часто появляется необходимость в регулировке мощности различных электрических приборов: газовых плит, чайника, паяльника, кипятильника, различных ТЭНов и т. п. В автомобиле может понадобиться регулировка оборотов двигателя. Для этого можно использовать простую конструкцию — регулятор напряжения на тиристоре. Своими руками к тому же его сделать несложно.

Некоторые нюансы выбора

Сделать тиристорный регулятор напряжения своими руками несложно. Это может быть первой поделкой начинающего радиолюбителя, которая сможет обеспечить регулировку температуры жала паяльника. К тому же паяльники с возможностью регулировки температуры заводского производства стоят дороже простых моделей без такой возможности. Поэтому можно ознакомиться с основами пайки и радиоконструирования, а также сэкономить немалую сумму. С помощью небольшого количества комплектующих можно собрать простой тиристор с навесным монтажом.

Навесной тип монтажа осуществляется без необходимости использования специальной печатной платы. С хорошими умениями в этой области можно таким способом собрать простые схемы достаточно быстро.

Схема регулятора напряжения на тиристоре

Можно сэкономить время и установить на паяльник готовый тиристор. Но если есть желание разобраться в схеме полностью, то тиристорный регулятор мощности придётся сделать своими руками.

Важно! Такое устройство, как тиристор, является регулятором общей мощности. Кроме этого, применяется для регулировки числа оборотов различного оборудования.

Но в первую очередь требуется понять общий принцип работы устройства, разобраться с его схемой. Это даст возможность правильно рассчитать необходимую мощность для оптимальной работы оборудования, на котором оно будет выполнять свои прямые обязанности.

Конструктивные особенности

Тиристор — это полупроводниковый элемент, которым можно управлять. Он может очень быстро при необходимости провести ток в одном направлении. В отличие от классических диодов с помощью тиристора выполняется регулировка момента подачи напряжения.

Читать еще:  Блок питания с регулировкой напряжения сделай сам

Он имеет сразу три элемента для вывода тока:

  • катод;
  • анод;
  • управляемый электрод.

Конструктивные особенности тиристора

Работать такой элемент будет только при соблюдении определённых условий. Во-первых, он должен размещаться в схеме под общим напряжением. Во-вторых, на управляющую часть электрода должен быть подан необходимый кратковременный импульс. Это позволит регулировать мощность прибора в нужном направлении. Можно будет выключать устройство, включать его и изменять режимы работы. В отличие от транзистора тиристор не требует удержания управляющего сигнала.

Применять тиристор в целях обеспечения постоянного тока является нецелесообразным, поскольку тиристор легко закрыть, если перекрыть поступление в него тока по цепи. А для переменного тока в таких устройствах, как тиристорный регулятор, применение тиристора обязательно, поскольку схема выполнена таким методом, чтобы полностью обеспечивать необходимое закрывание полупроводникового элемента. Любая полуволна способна полностью закрыть отдел тиристора в случае такой потребности.

Схему начинающим довольно сложно понять, но воспользовавшись инструкциями от специалистов, они значительно упростят себе процесс создания.

Области и цели использования

Для начала нужно понять, в каких целях используется такое устройство как тиристорный регулятор мощности. Применяются регуляторы мощности практически во всех строительных и столярных электрических инструментах. Кроме этого, в кухонной технике без них тоже никак. Они позволяют, к примеру, регулировать режимы скорости кухонного комбайна или блендера, скорость нагнетания воздуха феном, а также функционируют для обеспечения выполнения других не менее важных задач. Полупроводниковый элемент позволяет более эффективно регулировать мощность нагревательных приборов, то есть их основной части.

Применение регулятора напряжения на тиристоре

Если использовать тиристоры в схеме с высокоиндуктивной нагрузкой, то они могут просто не закрыться в нужный момент, что приведёт к выходу из строя оборудования. Многие пользователи видели или даже самостоятельно пользовались такими устройствами, как болгарки, шлифовальные машины или дрели. Можно заметить, что главным образом регулировка мощности осуществляется при помощи нажатия кнопки. Эта кнопка и находится в общем блоке с тиристорным регулятором мощности, который изменяет обороты двигателя.

Важно! Тиристорный регулятор не может менять обороты автоматически в асинхронных двигателях. А вот в коллекторном двигателе, оборудованном специальным щелочным узлом, работать регулировка будет корректно и полноценно.

Принцип действия

Особенность работы заключается в том, что в любом приборе напряжение будет регулироваться мощностью и перебоями в электросети согласно синусоидальным законам.

Любой тиристор общей мощности может пропускать ток только в одном направлении. Если тиристор не отключить, то он будет продолжать работать и отключится только после совершения определённых действий.

При самостоятельном изготовлении необходимо спроектировать конструкцию таким образом, чтобы внутри было достаточно свободного места для установки регулирующего рычага или кнопки. В том случае когда устройство устанавливается по классической схеме, целесообразно подключение через особый выключатель, который будет изменять цвет при разном уровне мощности.

Кроме этого, такое дополнение позволяет частично предотвратить возникновение ситуаций с поражением человека током. Не нужно будет искать подходящий корпус, а также прибор будет иметь привлекательный внешний вид.

Способы закрывания тиристора

Существует множество способов закрывания тиристоров. Но в первую очередь необходимо помнить, что подача любых сигналов на электрод не сможет закрыть его и погасить действие. Электрод способен только запустить устройство. Существуют и аналоги — запираемые тиристоры. Но их прямое предназначение немного шире, чем у обычных выключателей. Классическую схему тиристорного регулятора напряжения можно выключить только прерыванием подачи тока на уровне анод-катод.

Принцип действия регулятора напряжения на тиристоре

Закрыть регулятор мощности на тиристоре ку202н можно минимум 3 способами. Можно просто отключить всю схему от батарейки. Таким образом диод выключится. Но если повторно включить устройство, то оно не включится, поскольку тиристор остаётся в закрытом состоянии. Он будет находиться в таком положении, пока не будет нажата соответствующая кнопка.

Вторым способом закрытия тиристора является прерывание подачи тока. Это можно сделать, просто замкнув соединение катода анода с помощью обычной проволоки. Проверить можно на схеме с простым светодиодом вместо прибора. Если перемычку из проволоки подсоединить, как указано выше, то всё напряжение пойдёт через проволоку, а уровень тока, которой пойдёт в тиристор, будет нулевым. После того как забрать проволоку обратно, тиристор закроется и прибор выключится. В этом случае прибор — это светодиод, и он погаснет. Если экспериментировать с подобными схемами, то в качестве перемычки можно использовать пинцет.

Если вместо светодиода установить нагревательную спираль большой мощности, то можно получить законченный тиристорный регулятор.

Третий способ заключается в том, чтобы уменьшить напряжение питания до минимального, после чего изменить полярность на противоположную. Такая ситуация приведёт к выключению устройства.

Простой регулятор напряжения

Для производства простейшей системы, работающей на 12 вольтах, понадобятся такие ключевые элементы, как выпрямитель, генератор и аккумулятор. Генератор является одним из главных компонентов. Для изготовления понадобятся вышеупомянутые радиодетали, а также схема простейшего регулятора мощности. Стоит отметить, что в ней нет стабилизаторов.

Способы закрывания тиристора

Для изготовления необходимо подготовить такие элементы:

  • 2 резистора;
  • 1 транзистор;
  • 2 конденсатора;
  • 4 диода.

Специально для транзистора лучше устанавливать систему охлаждения. Это позволит избежать перегрузок системы. Устройство лучше устанавливать с хорошим запасом мощности, чтобы заряжать в последующем аккумуляторы с небольшой ёмкостью.

Регулировка напряжения трансформатора тиристором

Источники питания />Регуляторы мощности />Многоимпульсное управление тиристорами

Многоимпульсное управление тиристорами

Звезда активнаЗвезда активнаЗвезда активнаЗвезда активнаЗвезда активна

С.Ю. Стебенев, г. Луганск РА 6’2007
Схем управления тиристорами и симисторами существует много, очень короткий список наиболее интересных из них приведен в [1 —6]. Проблемы, о которых говорится в статье, присущи обоим типам электронных приборов, поэтому далее в тексте указывается один из них. Самые простые тиристорные регуляторы состоят из 3-5 деталей [1], сложные могут содержать до десятка цифровых и аналоговых микросхем [4]. В быту тиристорные регуляторы применяются в зарядных устройствах, для регулирования освещенности, мощности нагревательных приборов, температуры жала паяльника и т.д.

В промышленности, в основном нашли применение 3-фазные регуляторы. Используются они как возбудители для мощных синхронных двигателей, регулируемые выпрямители в гальванике, мощные зарядные устройства, схемы питания электроприводов постоянного тока, а также на электротранспорте. При всем многообразии схем и решений можно отметить следующее: работоспособны все схемы, начиная с самых простых.
Существуют некоторые задачи, с которыми простые схемы управления не справляются, устройство в целом начинает вести себя непредсказуемо. Связано такое поведение с видом и характером нагрузки, мощность в которой пытаются регулировать. Например, схемы [2, 6] прекрасно работали с электроплиткой и настольным светильником, но очень плохо — с электроинструментом и при попытке регулировать сварочный ток (по первичной обмотке сварочного трансформатора). В первом случае, намоточный станок на базе старой электродрели при попытке регулировки оборотов начинал работать неустойчиво (с ощутимыми рывками), во втором — сварочный ток не регулировался, так как не удавалось зажечь нормальную дугу (сам сварочный аппарат обладал «мягкой» характеристикой, без регулятора
прекрасно варил). Собранные по предлагаемой схеме регуляторы, справились с этими задачами.
Электрическая принципиальная схема устройства (рис.1)

состоит из формирователя пилообразного напряжения, каскада сравнения и генератора управляющих импульсов. Режим по постоянному току каскада на VT1 выбран так, что на его коллекторе появляются положительные импульсы длительностью около 0,5 мс в каждый момент перехода сетевого напряжения через нуль. Транзистор VT2 разрядный, на конденсаторе С2 при его заряде через R5 формируется напряжение, близкое к пилообразному (экспоненциальное). Каждые 10 мс транзистор VT2, открываясь, разряжает конденсатор С2. Генератор управляющих импульсов собран на транзисторе VT3 по схеме блокинг-генератора. В отличие от классической схемы в данном блокинг-генераторе на импульсном трансформаторе прибавилась дополнительная обмотка 1а. Благодаря этому появилась возможность управлять работой генератора. Выводы обмоток трансформатора Т1 сфазированы так, что блокинг-генератор вырабатывает управляющие импульсы в те моменты, когда на аноде VD7 напряжение выше, чем на аноде VD6. С помощью резистора R6 можно задавать напряжение на аноде VD6 и тем самым изменять момент включения тиристора. С выходной обмотки 3 пачки управляющих импульсов с частотой заполнения около 2 кГц поступают на управляющий электрод тиристора, обеспечивая его надежное отпирание, независимо от характера нагрузки. Осциллограммы в основных точках схемы показаны на рис.2.

О преимуществах многоимпульсного управления пишется, например в [3, 4]. Тиристор и симистор не являются полностью управляемыми приборами, они открываются управляющим импульсом, если в это же время к катоду и аноду
приложено напряжение, отличное от нуля (для тиристора еще и в прямой полярности), закрываются приборы самостоятельно, в момент, когда исчезает напряжение между анодом и катодом. В этой особенности
данных приборов и заключается возможная нестабильность работы схем регуляторов. При работе на чисто активную нагрузку проблем не возникает даже в самых простых схемах. Картина меняется, когда к регулятору подключают нагрузку с прерывистым характером (коллекторный электродвигатель).
В зависимости от физического состояния коллекторного и щеточного узлов двигателя при его работе ток в якорной цепи может прерываться, тиристор в данном случае самостоятельно выключится до окончания текущего полупериода питающего напряжения. Произвольное неуправляемое выключение не позволяет поддерживать заданный режим работы. В такой ситуации выручает многоимпульсное управление, генератор управляющих импульсов выдает не один управляющий импульс, как в большинстве известных простых схем управления, а пачку импульсов с частотой заполнения 2. 4 кГц. При таком способе управления силовой ключ открывается первым импульсом из пачки, если ток в цепи прервется и тиристор отключится до окончания текущего полупериода, он вновь будет включен ближайшим, последующим в пачке управляющим импульсом.
Схожая картина происходит при работе тиристорных регуляторов на индуктивную нагрузку (например, первичная обмотка сварочного трансформатора). При этом в момент включения тиристора в обмотке трансформатора происходит переходной колебательный процесс, который также может вызвать преждевременное отключение тиристора (проявляется не всегда, зависит от конструкции трансформатора, установленного угла включения тиристора и даже от характера нагрузки во вторичной обмотке). Многоимпульсное управление помогает и в этом случае.
Конструкция и детали
Схема собрана на плате из одностороннего стеклотекстолита (рис.3).

К деталям особых требований не предъявляется. Единственная нестандартная деталь — это импульсный трансформатор. Трансформатор намотан на броневом сердечнике Б26, феррит 2000НН. Обмотки 1а, 1б содержат по 40 витков ПЭЛ 0,2, намотанных в два провода. Обмотка 2 содержит 40 витков ПЭЛ 0,3, мотать обмотку нужно так, чтобы ее выводы расположились против выводов обмоток 1 а, 1б. Обмотку 3 наматывают поверх остальных, она содержит 50 витков ПЭЛ 0,2. Если схема будет применена в выпрямителе или регуляторе с двумя тиристорами, понадобится еще одна такая же обмотка. Намотка равномерная. При намотке, разнополярные выводы обмоток лучше делать разной длины (например, все выводы начала -короче). При сборке это поможет правильно распаять выводы трансформатора. Светодиод LED1 импортный диаметром 3 мм красного цвета свечения, он сигнализирует о включении схемы в сеть. Симистор, один или два тиристора, выбирают исходя из конкретного применения схемы. Для проверки возможностей данной схемы она испытана с симисторами КУ208А, ТС122-25, ТС142-80. Замечаний по работе во всех трех вариантах не было. Переменный резистор любого типа, желательно группы «А». Резистор R1 импортный, можно установить МЛТ-2, отформовав выводы.
Настройка
Если монтаж произведен без ошибок, все детали исправны и импульсный трансформатор подключен правильно, схема в настройке не нуждается. Необходимо помнить, что симистор открывается управляющими импульсами отрицательной полярности при любой полярности напряжения, приложенного к катоду и аноду. Если данная схема будет использоваться для управления тиристором, выводы от точек «а» и «б» необходимо поменять местами («б» — к управляющему электроду, «а» — к катоду тиристора). При правильной работе схемы напряжение на нагрузке плавно изменяется от 0 до максимального значения, при изменении положения движка R6 из крайнего верхнего положения в крайнее нижнее по электрической схеме.
Литература
1. Щербатюк В. Заворачиваем шурупы электродрелью//Радиолюбитель. — 1999. — №9. — С.23.
2. Глухов В. Вертикальное управление тринистором//Радио. -1981- №5-6. — С. 70.
3. Шичков Л. Блок управления тиристорами//Радио. -1982. -№10. -С.22-24.
4. Шичков Л., Алексеев А. Цифровой тиристорный регулятор/f/Радио. — 1986. — №8. — С.56-58.
5. Черный В. Симисторный регулятор мощности/’/Радио. -1986. -№8. -С.20.
6. Приймак Д. Низковольтный тринисторный регулятор//Радио. — 1989. — №5. — С. 78-80.

Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector