Setting96.ru

Строительный журнал
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Регулировка кулера на одном полевом транзисторе

Регулировка кулера на одном полевом транзисторе

Непонимание работы ШИМ или PWM ( Pulse-width modulation ) часто приводит не только к их неправильному использованию, но даже к ошибкам в проектировании устройств использующих ШИМ для управления. Здесь, ограничившись конкретным применением, я попытаюсь рассказать что такое ШИМ, для чего она требуется и как работает.

Сначала, что такое ШИМ.
Широтно-импульсная модуляция (ШИМ, англ. Pulse-width modulation (PWM)) — управление средним значением напряжения на нагрузке путём изменения скважности импульсов, управляющих ключом.
Когда нужна ШИМ

Главной причиной применения ШИМ является необходимость обеспечить пониженным постоянным напряжением силовых устройств электроники при сохранении высокого КПД, особенно в управляемых электроприводах.

Во внутренних сетях аппаратуры для питания устройств используется постоянное напряжение ограниченного набора напряжений, которые часто требуется изменить под требования конкретного устройства, стабилизировать или регулировать его. Это могут быть электроприводы постоянного тока, чипы, узлы радиоаппаратуры.

Регулировку можно осуществлять с помощью гасящих напряжение устройств: резисторов, транзисторов (если требуется регулировка). Главный недостаток такого решения потери мощности и повышенное тепловыделение на регулирующих устройствах.

Поскольку известно что выделяемая мощность равна :

P = I x U или P = I 2 x R Вт.

то чем больше ток I в цепи и падение напряжения U , тем больше потери мощности. Здесь R — величина сопротивления регулирующего элемента.

Представьте что требуется погасить хотя бы 3 V при токе нагрузки 10 A , это уже 30 Вт истраченных в пустую. А каждый ватт теряемой мощности не только снижает продолжительность работы источников питания, но и требует дополнительного оборудования для вывода выделяемого, этой мощностью, тепла.

Это относится к гасящим резисторам и полупроводниковым приборам тоже.

Но хорошо известно, что полупроводниковые приборы очень хорошо (с малыми потерями и тепловыделением) работают как ключи, когда имеют только два состояния открыт/закрыт.

Этот режим позволяет снизить потери на коммутирующем полупроводниковом приборе до уровня:

U нас для современных полупроводниковых коммутаторов приближается к 0,3 v и при потребляемых токах 10 А потери мощности будут приближаться к 3 Вт. Это в режиме ключа, а при работе в устройствах ШИМ и меньше.

В ШИМ в качестве ключевых элементов использует полупроводниковые приборы в ключевом режиме, то есть транзистор всё время или разомкнут (выключен), или замкнут (находится в состоянии насыщения).
В первом случае транзистор имеет почти бесконечное сопротивление, поэтому ток в цепи весьма мал, и, хотя всё напряжение питания падает на транзисторе, выделяемая на транзисторе мощность практически равна нулю.
Во втором случае сопротивление транзистора крайне мало, и, следовательно, падение напряжения на нём близко к нулю — выделяемая мощность также мала.
В переходных состояниях (переход ключа из проводящего состояния в непроводящее и обратно) мощность выделяемая в ключе значительна, но так как длительность переходных состояний крайне мала, по отношению к периоду модуляции, то средняя мощность потерь на переключение оказывается незначительной.

Реализовать преимущества ключевого режима в схемах понижающих и регулирующих напряжение постоянного тока, позволило использование ШИМ.

Повторюсь, широтно-импульсная модуляция — управление средним значением напряжения на интегрирующей нагрузке путём изменения скважности импульсов, с помощью управляющего ключа.

Работа ШИМ на интегрирующую нагрузку показана на рис. 1.

Главным условиям такого применения ШИМ является наличие интегрирующей нагрузки.

Потому что амплитудное значение напряжения равно E .

Это могут быть интегрирующая RC, LC, RLC или RL цепи и механические интеграторы (например электромотор).

При работе ШИМ на интегрирующей нагрузке напряжение — эквивалентное постоянное напряжение изменяется в зависимости от скважности ( Q ) импульсов.

здесь: Q — скважность, t и — длительность импульса, T — период следования импульсов.

С учетом скважности эквивалентное постоянное напряжение будет равно:

E экв = Q x E Вольт

здесь: E экв — эквивалентное постоянное напряжение ( Вольт ), Q — скважность, E — напряжение источника от которого запитан ШИМ преобразователь ( Вольт ).

Реально на зажимы нагрузки ШИМ подается напряжение равное E , а работа совершаемая электрическим током (или число оборотов электродвигателя) определяется именно E экв . При восстановлении на интегрирующем конденсаторе получаем именно напряжение E экв.

Мощность выделяемая на управляющем ключе, управляемом ШИМ равна:

Схема подключения нагрузки к ШИМ.

Никаких отличных от схемы включения электродвигателя на постоянном токе (частный случай нагрузки) схемных решений ШИМ не требует. Просто электродвичатель подключается к источнику питания работающего в режиме ШИМ. Разве что, в определенных ситуациях требуется ввести дополнительную фильтрацию помех возникающих на фронтах импульсов. Этот фильтр на рис. 2 в виде конденсаторов и демпфирующего диода.

На рис. 2 показано такое подключение.

Мы видим, что коммутатор (полевой транзистор) можно просто заменить на переменный резистор.

Схема PWM

В статье "Переходник для вентилятора 3 pin на 4 pin" http://de1fer.ru/?p=45#more-45 владелец блога приводит схему вентилятора с P WM .

здесь: GND — земля (общий), Control — контакт P WM управления, +12 — напряжение питания, Sense — вывод датчика оборотов.

В данной схеме управление возможно скорее постоянным током +I упр, чем ШИМ сигналом.

Для управления импульсным (ШИМ) сигналом требуется схема изображенная на рис. 4. Да и судя по параметрам транзистора "PWM" он выбирался именно для управления постоянным током. По крайней мере он будет нормально работать в таком режиме с вентилятором до 1,6 Вт.

А вот в импульсном режиме без конденсатора C , транзистор BC879 будет греться немного меньше чем на постоянном токе и возможен останов электродвигателя на малых длительностях токового импульса (малых оборотах) из-за его интегрирования на входной емкости C вх транзистора.

Основные параметры кремниевого биполярного высокочастотного n-p-n транзистора BC879 от SIEMENS

Pc maxUcb maxUce maxUeb maxIc maxTj max, °CFt max
800mW100V80V5V1A150°C200MHz

В случае необходимости отключить PWM (ШИМ) управление в схеме показанной на рис. 3 необходимо просто соединить вывод Control с проводом +12v .

Есть другой вариант схемы вентилятора с P WM на форуме Radeon.ru

Существенных отличий от рис. 3 нет, только в качестве управляемого ШИМ ключа используется МОП полевой транзистор со встроенным или индуцированным каналом p- типа. Данная схема тоже может управляться как P WM так и постоянным напряжением (но рисковать не стоит — надо знать параметры транзистора).

Данная схема вполне работоспособна и не имеет недостатков схемы показанной на рис. 3.

Для отключения (в зависимости от типа транзистора) достаточно соединить вывод Control с проводом + или -.

Вниманию самодельщиков!

Я бы не рекомендовал применение вентиляторов имеющих встроенный PWM (4- pin ) одновременно с какими либо иным регуляторам оборотов вентилятора.

В случае если Вас не устраивает алгоритм управления PWM встроенного на материнскую (системную) плату.

И у Вас есть устраивающий Вас реобас (контроллер управления вентилятором), то используйте вентилятор с 3-pin соединитель.

Если вентилятор с PWM вам дорог или не имеет замены — то необходимо отключить PWM , способом описанным выше, заменив соединитель 4-pin на 3-pin и подключить к реобасу.

Но помните применение вентилятора с PWM в любом нештатном режиме не позволит достичь его максимальной производительности.

Применение одновременно с PWM — токового управления на постоянном токе не рекомендуется по причине снижение напряжения питания вентилятора на 10-20%, что не даст вывести такой вентилятор на полную производительность.

Применение одновременно с PWM — ШИМ по цепи питания может привести к периодической нестабильности работы вентилятора (возможно возникновение скользящих биений между частотами PWM — ШИМ по цепи питания систем) и создать неоднозначность для систем оснащенных системой стабилизации оборотов. Кроме того как и в предыдущем случае на 10-15% снизится результирующее напряжение на вентиляторе, что не даст вывести такой вентилятор на полную производительность.

Так что остановитесь на чем-то одном. Или используйте вентилятор с PWM , или применяйте внешнее управление вентилятором по цепи питания на вентиляторе с 3-pin разъемом.

Заключение

Применение PWM или ,как привыкли говорить мы, ШИМ повышает КПД понижающих напряжение устройств постоянного тока, что снижает общее тепловыделение электронных устройств с ШИМ.

ШИМ позволяет создавать компактные системы регулируемого электропривода постоянного тока большой мощности.

Читать еще:  Регулировка при помощи расходомера

В современных устройствах постоянного тока управляющих напряжением и понижающих стабилизаторах напряжениях обычно регулировки выполняются с помощью ШИМ. Для этого выпускаются контроллеры требующие минимум навесных элементов.

Регулировка кулера на одном полевом транзисторе

Статья ориентирована на подготовленного пользователя.

Задача

В процессе экспериментов по моддингу и разгону компьютерных комплектующих часто возникает необходимость в плавном управлении скоростью вращения мощных вентиляторов в системе воздушного охлаждения.
Необходимо иметь малогабаритное устройство, которое позволило бы эффективно изменять скорость вращения вентилятора от минимального значения до максимального, не боясь вывести кулер из строя в экстремальных режимах.
При непосредственном участии VER-VOLF в отделе систем автоматики и робототехники ИЭС Патона НАН Украины было создано устройство с необходимыми характеристиками, предназначенное для управления скоростью вращения вентиляторов в компьютерных системах.

Технические характеристики

Устройство питается постоянным током в диапазоне питающих напряжений от 12 до 25 (30) вольт.
Элемент управления — потенциометр (резистор), который можно вывести на переднюю панель компьютера или закрепить его в другом желаемом месте.
Пределы регулировки скорости стандартного вентилятора на 12В: от 1% до 100% при 12-вольтовом питании и от 5% до

200% при 25-вольтовом питании.
Рекомендованная рабочая мощность нагрузки на устройство до (12В*5А) 60Вт.
Максимальная мощность нагрузки на устройство – 200Вт, в таком случае провода в силовой части должны быть диаметром не менее 1.5 мм.
В будущем устройство может оборудоваться схемой цифрового управления от LPT-порта, а также соответствующей компьютерной программой для этих целей.

Преимущества перед аналогами

Простая схемотехника с использованием доступных импортных и отечественных радиоэлементов, применение ШИМ-модуляции позволило эффективно и в широких пределах изменять контролируемые параметры. Тепловыделение устройством отсутствует. Также высокий КПД и малые габариты выгодно отличают устройство от аналогичных.

Принцип действия

После подачи номинального напряжения питания 12В стабилизатор DA2 ограничит его до 9 вольт, необходимых для питания микросхем DA1 и DD1.
Далее один из элементов микросхемы DD1, включенный как генератор, начинает генерировать прямоугольные импульсы частотой

2 кГц.
Затем сгенерированные импульсы попадают на микросхему DA1 — 555 таймера, включенного как ШИМ- контроллер. Управление работой 555 микросхемы осуществляется с потенциометра R5, выведенного за пределы схемы.
Далее с 3 его вывода DA1 сгенерированные импульсы ШИМ-модуляции попадают на элемент DD 1.2 (триггер Шмидта), где формируются и инвертируются, после чего сформированные импульсы приходят на затвор мощного ключевого транзистора VT1 (аналога реле). Он в свою очередь управляет длительностью импульсной подачи питания в нагрузку.
Питание микросхемы DD-1 на схеме не указано. Вы должны подключить 14 ножку DD-1 прямо на выход стабилизатора — 9 вольт. А седьмую ножку на первый контакт DA-2, ИЛИ на любое место где есть земля, например, DA-2.555 таймер должен формировать четкий ШИМ-сигнал.

Немного о назначении определенных элементов

RC-цепочка, С1 + R1 + R6, определяет частоту тактового генератора на элементе DD1.1.
R6 служит для точной подстройки генератора.
R2 — R3 — C3: обвязка микросхемы DA2.
С2 — блокирующий конденсатор (необходимо установить между выводами 1-8 DA2).
C5 – C6: фильтры по питанию.
Дроссель T1 и конденсаторы C4 — C7: выходные фильтры канала питания вентилятора.
R4 — защита затвора полевого транзистора.
D1 — защита транзистора от само-Э.Д.С нагрузки.

Вроде с теорией разобрались и мы приступим к сборке устройства по имеющейся принципиальной схеме. Картинка кликабельна.

Необходимая элементная база

  • DA1: микросхема NE 555 (или аналог) — 1 шт.
  • DD1: микросхема К561ТЛ-1 — 1 шт.
  • DA2: микросхема 78 L 09 (стабилизатор на 9В) — 1шт.
  • VT1: транзистор MOSFET IRLR-014 — 1 шт.
  • D1: диод Шоттки — IN 58 22 (на 3 ампера) — 1 шт.
  • C1: 300 n, 30В — 1 шт.
  • C2,C3,C4: 100 n, 30В — 3 шт.
  • C5,C6: 470 n, 30В — 2 шт.
  • С7: 22 мкф, 63В — 1 шт.
  • R1: 47 кОм, 0.125 Вт — 1 шт.
  • R2: 100 Ом, 0.25 Вт — 1 шт.
  • R3: 10 кОм, 0.125 Вт — 1 шт.
  • R4: 100 кОм, 0.125 Вт — 1 шт.
  • R5: 1.5 кОм, 0.25 Вт (можно многооборотный для точности) — 1 шт.
  • R6: 22 кОм, СП 5-2 или СП 5-3 (желательно 5% допуск) — 1 шт.

0.5-1 мм. Не лишними будут низкочастотный осциллограф и цифровой мультиметр.

Сборка

Я собирал устройство на плате для макетирования, так как было мало времени, много дел и не было желания травить печатную плату. Вы же можете развести и вытравить плату (конечно, если у вас есть опыт в этом деле) или повторить мой путь.
Предварительно был собран отладочный макет.

После успешных испытаний я приступил к сборке рабочего макета.

В процессе сборки устройства сначала впаиваются микросхемы, затем обвязка (резисторы, конденсаторы, диод). В последнюю очередь впаяйте полевой транзистор (будьте осторожны, он боится статики!).

Настройка устройства

Правильно собранное устройство из исправных элементов начинает работать сразу после подачи питания. Однако, для адекватного функционирования собранного модуля потребуется провести настройку.

Настройка заключается в следующем:
1. Подключите нагрузку (вентилятор).
2. Резистор управления (R5) установите в одно из крайних положений.
3. Приготовьте часовую отвертку для подстроечного резистора (R6).
4. Включите питание схемы 12В.

Далее медленно вращайте движок резистора (R5) и следите за скоростью вращения кулера. Процесс должен быть таким: в одном из крайних положений резистора (R5) скорость кулера должна быть очень малой или равняться нулю, а при переходе к другому крайнему положению обороты должны возрастать до максимума. Если это не так, то попробуйте регулировкой резистора (R6) в одном из крайних положений резистора (R5) добиться нулевой скорости. После настройки проверьте работу модуля еще раз и упакуйте его в защитный корпус.

Это была примитивная настройка для любителей. Теперь — нормальная настройка для маньяков (не забываем, на кого рассчитана статья). Возьмите осциллограф и подключитесь к 4-му выводу DD1.2

При изменении положения движка резистора R5 вы должны наблюдать на 4-м выводе примерно такие формы сигналов.

Движок резистора в крайнем положении, кулер должен стоять на месте.

Выводим движок резистора R5 в среднее положение, кулер начинает вращаться.

Продолжаем вращать резистор, кулер набирает обороты.

Крайнее положение движка, обороты максимальны, импульсы исчезают, на 4-м выводе 9 вольт.

Помните, регулировка скорости кулера данным устройством нелинейна и начало границы регулировки зависит от нагрузки на устройство. При изменении типа вентилятора или их количества, подключаемых к модулю, возможно, необходимо будет провести корректировку работы устройства, описанную выше.

Все своими руками

Обновления в Вконтакте Обновления в Одноклассниках Обновления в FaceBook

Приветствую. Для проверке блоков питания все время приходиться изобретать какую то нагрузку, то лампы, то нихромовая спираль, то еще какие то приборы подключаю. И что бы не тратить время решил собрать электронную нагрузку
Уже давно присматривал схему электронной нагрузки. Все как один похожи, компараторы, полевые транзисторы и ИОН. В итоге заинтересовала эта

Исходная схема электронной нагрузки

Схема электронной нагрузки

— В этой схеме электронной нагрузки понравилась опция использовать нагрузку как резистор с постоянным сопротивлением.
— Так же в исходной схеме предусмотрена возможность автоматического отключения при падении напряжения до определенного порога. Эта функция будет полезна для разрядки аккумуляторов 12-24В
— Еще есть защита от перегрева, но я ее использовать не буду. Доработав схему под свои нужды получилось следующее

Схема электронной нагрузки своими руками

Схема электронной нагрузки своими руками

— В этой схеме предусмотрено переключение между режимами Резистор и Постоянный ток
— В режиме Постоянный ток есть выбор между автоматическим отключением и постоянно включенной нагрузкой.
— Защита от переполюсовки переделана и диод не влияет на напряжение на вольтметре
— Вольтметр Амперметр Ваттметр и Емкость метр(не знаю как еще назвать) в одном приборе, купленный за 500 рублей, если интересно подробности тут
— Теперь можно точно выставлять ток, за счет дополнительного резистора Точно

Для схемы была разработана печатная плата электронной нагрузки. Немного не компактно, но рабочий вариант и почти ничего не греется, кроме резисторов 5Вт и транзисторов

Читать еще:  Как отрегулировать поплавок в бачке унитаза с кнопкой

Печатная плата электронной нагрузки

Печатная плата электронной нагрузки

Скачать печатную плату для электронной нагрузки можно тут

Как изготовить печатную плату своими руками, можно посмотреть в статье Как изготовить печатную плату.

— Диодный мост использовал на 2А, охлаждение для кренки не требуется, но на всякий случай радиатор предусмотрел.
— Защитный диод Шотки 100В
— Транзисторы можно ставить в разных корпусах

Собрал плату электронной нагрузки очень быстро, сложностей не возникало. Сначала собираются все цепи без микросхемы, проверяются все напряжения.
После КРЕНки 12В, на опорном с TL431 8.5В и 0.5В на максимум выкрученном переменном резисторе

Проверка опорных напряжений на электронной нагрузке

Проверка опорных напряжений на электронной нагрузке
Если все напряжения в норме, можно собрать схему до конца и попробовать нагрузить схемку.
— Обязательно транзисторы установить на радиатор. Кстати транзисторы использую 23N50 и они способны рассеять около 315Вт, хотя мне по 150Вт хватит вполне.
— Подключить Ваттметр подав ему дополнительное напряжение с шины 12В, а провода с шунта подсоединить в разрыв минуса, на плате точка А.

Нагружать буду безопасно, на лабораторный блок питания. Блок питания на 2.5А, поэтому ток нагрузки около 2А напряжение.

Тестовая нагрузка на лабораторный блок питания 2А

Тестовая нагрузка на лабораторный блок питания 2А
Вроде все работает хорошо, можно настроить эквивалент резистора. Выставляю на блоке питания 1В и подкрутив подстроечный R23 добиваюсь тока 1А если хочу регулировку от 1Ома и 0,5А если хочу регулировку от 2Ом, а дальше по закону Ома

Настройка эквивалента резистора на электронной нагрузке

Настройка эквивалента резистора на электронной нагрузке
Установка напряжения автоматического отключения осуществляется резистором R14. Для настройки к нагрузке подаю 10,8В, устанавливаю небольшой ток допустим 100мА и резистором R14 добиваюсь отключения нагрузки от БП.

Все настройки окончены и можно серьезно испытать. Добавлю хорошую турбинку для охлаждения радиатора и нагружу на более мощный блок питания 12В .
Ток нагрузки на полностью выкрученном резисторе Точно ток до 0,75А и полностью выкрученных резисторах Точно и Грубо ток до 15,5А
Испытания электронной нагрузки на максимальном токе
Испытания электронной нагрузки на максимальном токе
Погонял значит нагрузку и вроде большего желать нечего, кроме корпуса .
— Для корпуса взял старый корпус от сварочного инвертора.
Вырезал новые отверстия, покрасил и вроде нормально вышло.
— Установил вентилятор 12В
— Убрал с Ваттметра корпус, что бы поместился нормально. Так шунт лучше будет охлаждаться
Сборка электронной нагрузки в корпус
Сборка электронной нагрузки в корпус
Что сказать в заключение. Хороший прибор получился, думаю послужит на славу.
На данный момент проверенные характеристики 12В 15А- это 180Вт. Со средней нагрузкой 180Вт вентилятор нормально справлялся с отводом тепла от радиатора, дальше страшно. Но думаю можно нагрузить до 450Вт, при должной доработке.Что бы разогнаться до 450Вт надо установить вентилятор на 24В, естественно заменить трансформатор на 24В. И все же добавить термоконтроль, на всякий случай.
Так же думаю добавить переключатель между токами 15А с напряжением 15-30В и 30А для напряжений 0-15В, это расширит функционал нагрузки

Пока что все. Рекомендую схему к повторению или, если хотите готовую плату, можете мне написать в личные сообщения в группе ВК. Кнопки с группами в социальных сетях находятся вверху страницы, подпишитесь и будьте всегда в курсе последних обновлений.

«Электроника и Радиотехника»

Устройство заменяет нагрузку в виде набора постоянных или переменных резисторов и поможет при испытании и налаживании блоков питания.

Выбор силового транзистора зависит от того какой максимальный ток нагрузки вы желаете получить, соответственно подбирается измерительная головка и шунт. Допустимо использовать параллельное включение силовых транзисторов, при этом нагрузка на каждый из них уменьшиться, а общий ток увеличиться.

Испытуемый блок питания подключается к входным клеммам и резистором R2 выставляется желаемый ток.
Конструкцию можно выполнить навесным монтажом в любом подходящем корпусе, например от компьютерного блока питания, с вентилятором для обдува радиатора.

Основные параметры транзистора TIP36. Datasheet

Обозначение контактов:
Международное: C — коллектор, B — база, E — эмиттер.
Российское: К — коллектор, Б — база, Э — эмиттер.

Улучшенная схема электронной нагрузки с плавной регулировкой тока.
В качестве нагрузочного элемента здесь применен мощный полевой транзистор, обеспечивающий значительные преимущества по сравнению с традиционно используемыми для этой цели громоздкими реостатами. Однако в процессе испытаний нагрузочные элементы нагреваются, и температурный дрейф их параметров затрудняет проведение испытаний.
В предлагаемом устройстве ток через нагрузочный элемент стабилизирован, поэтому он практически не подвержен температурному дрейфу и не зависит от напряжения проверяемого источника, что очень удобно при снятии нагрузочных характеристик и проведении других испытаний, особенно длительных.
С помощью эквивалента нагрузки можно проверять не только стабилизированные и нестабилизированные блоки питания, но и батареи (гальванические, аккумуляторные, солнечные и т. д.).


Схема эквивалента нагрузки показана на рис. 1.

По принципу работы это — источник тока, управляемый напряжением (ИТУН). Эквивалент нагрузки — мощный полевой транзистор IRF3205, который выдерживает ток до 110А, напряжение до 55V и рассеиваемую мощность до 200W. Резистор R1 — датчик тока. Резистором R5 изменяют ток через резистор R2 и соответственно напряжение на нем, которое равно Uпит = R2/(R2+R3+R5), где Uпит — напряжение питания. На ОУ DA1.1 и транзисторе VT1 собран усилитель с отрицательной обратной связью с истока этого транзистора на инвертирующий вход ОУ. Действие ООС проявляется в том, что напряжение на выходе ОУ вызывает такой ток через транзистор VT1, чтобы напряжение на резисторе R1 было равно напряжению на резисторе R2. Поэтому резистором R5 регулируют напряжение на резисторе R2 и соответственно ток через нагрузку (транзистор VT1), равный Uпит = R2/[R1(R2+R3+R5)]. Пока ОУ находится в линейном режиме, указанное значение тока через транзистор VT1 не зависит ни от напряжения на его стоке, ни от дрейфа параметров транзистора при его разогреве. Цепь R4C2 подавляет самовозбуждение транзистора и обеспечивает его устойчивую работу в линейном режиме. Для питания устройства необходимо напряжение 9. 12V, которое обязательно должно быть стабильным, поскольку от него зависит стабильность тока нагрузки. Ток, потребляемый устройством, не превышает 10 мА.


Рис.2 Конструкция и детали.

В устройстве использованы детали для поверхностного монтажа, размещенные на печатной плате (рис. 2) из фольгированного стеклотекстолита, которая вместе с транзистором установлены на теплоотводе. Транзистор прикрепляют к теплоотводу винтом. Плату допустимо приклеить к теплоотводу для большей механической прочности. При изготовлении теплоотвода в виде пластины его площадь должна быть не менее 100. 150 см2 на 10 Вт рассеиваемой мощности. Для повышения эффективности при длительных испытаниях желательно применить вентилятор. Резистор R1 составлен из девяти сопротивлением по 0,1 Ом (мощностью 1 Вт), включенных параллельно и последовательно, как показано на рис. 2. Остальные постоянные резисторы — типоразмера 1206 и мощностью 0,125 Вт. Переменный резистор R5 -СПО, СП4. Конденсатор — С2 К10-17В, остальные — танталовые.

Вместо компонентов для поверхностного монтажа можно применить обычные, но тогда топологию печатной платы придется немного изменить. Номинальное напряжение конденсатора С1 должно быть не меньше напряжения проверяемого источника. Конденсатор С2 следует установить непосредственно на выводах транзистора VT1.
В устройстве применен ОУ LM358AM в случае использования других ОУ следует иметь в виду, что его питание в этом устройстве однополярное, поэтому он должен быть работоспособен при нулевом напряжении на обоих входах. Заменяя полевой транзистор, будьте внимательны: для этого устройства подходит большое число транзисторов фирмы IR, но некоторые из них могут работать неустойчиво. При отсутствии полевого можно применить составной биполярный транзистор структуры n-p-n с коэффициентом передачи тока не менее 1000 и соответствующим током коллектора, например, КТ827А—КТ827В. Выводы такого транзистора подключают соответственно: затвор — база, сток — коллектор, исток — эмиттер.

В этом случае сопротивление резистора R4 надо уменьшить до 510 Ом. Сильноточные цепи выполняют проводом соответствующего сечения.

Устройство не требует налаживания. Проверяемый источник питания с напряжением от 3 до 35V подключают к устройству с соблюдением полярности. Для уменьшения минимального значения напряжения контролируемого источника питания следует пропорционально уменьшить сопротивление резисторов R1 и R2. Ток, потребляемый эквивалентом нагрузки, регулируют резистором R5. Интервал регулировки тока при указанных на схеме номиналах элементов и напряжении питания 12V равен 0,5. 11А. Для уменьшения минимального значения тока можно ввести дополнительный переключатель, с помощью которого параллельно резистору R2 подключают резистор сопротивлением 100 Ом. В этом случае минимальное и максимальное значения тока уменьшатся в 10 раз.

Читать еще:  Как в биосе регулировать температуру процессора

Источник: журнал «Радио» №1 2005

Электронный предохранитель, осуществляет эффективную защиту в цепях электропитания с напряжением до 45V. Номиналы деталей приведены в таблице для разных токов срабатывания предохранителя.

I макс (A)R1 (Ом)R2 (Ом)VT1VT2VT3
51000,122N16132N3055BC148
0,510001BC1072N1613BC148
0,147004,7BC1072N1613BC148

Еще один вариант решения проблемы защиты блока питания от короткого замыкания (КЗ) в нагрузке, это включение последовательно с нагрузкой полевого транзистора со встроенным каналом.
В транзисторах такого типа на вольтамперной характеристике есть участок, на котором ток стока не зависит от напряжения между стоком и истоком. Поэтому на этом участке транзистор будет работает как стабилизатор или ограничитель тока.


Рис.1

Схема подключения транзистора к блоку питания показана на Рис.1, а вольтамперные характеристики транзистора для различных сопротивлений резистора R1 — на Рис.2.
Работает защита следующим образом. Если сопротивление резистора равно нулю (т. е. исток соединен с затвором), а нагрузка потребляет ток около 0,25А, то падение напряжения на полевом транзисторе не превышает 1,5V, и практически на нагрузке будет все выпрямленное напряжение. При появлении же в цепи нагрузки КЗ ток через выпрямитель резко возрастает и при отсутствии транзистора может достичь нескольких ампер. Транзистор ограничивает ток короткого замыкания на уровне 0,45. 0,5А независимо от падения напряжения на нем. В этом случае выходное напряжение станет равным нулю, а все напряжение упадет на полевом транзисторе. Таким образом, в случае КЗ мощность, потребляемая от источника питания, увеличится в данном примере не более чем вдвое, что в большинстве случаев вполне допустимо и не отразится на «здоровье» деталей блока питания.

Рис. 2

Уменьшить ток короткого замыкания можно увеличением сопротивления резистора R1.
Нужно выбирать такой резистор, чтобы ток короткого замыкания был примерно вдвое больше максимального тока нагрузки.
Подобный способ защиты особенно удобен для блоков питания со сглаживающим RC-фильтром — тогда полевой транзистор включают вместо резистора фильтра (пример показан на рис. 3).
Поскольку во время КЗ на полевом транзисторе падает почти все выпрямленное напряжение, его можно использовать для световой или звуковой сигнализации. Вот, к примеру, схема включения световой сигнализации — рис.7. Когда с нагрузкой все в порядке, горит светодиод HL2 зеленого цвета. При этом падения напряжения на транзисторе недостаточно для зажигания светодиода HL1. Но стоит появиться КЗ в нагрузке, как светодиод HL2 гаснет, но зато вспыхивает HL1 красного свечения.

Рис. 3

Резистор R2 выбирают в зависимости от нужного ограничения тока КЗ по высказанным выше рекомендациям.
Схема подключения звукового сигнализатора приведена на рис. 4. Его можно подключать либо между стоком и истоком транзистора, либо между стоком и затвором, как светодиод HL1.
При появлении на сигнализаторе достаточного напряжения вступает в действие генератор ЗЧ, выполненный на однопереходном транзисторе VT2, и в головном телефоне BF1 раздается звук.
Однопереходный транзистор может быть КТ117А — КТ117Г, телефон — низкоомный (можно заменить динамической головкой небольшой мощности).


Рис. 4

Для слаботочных нагрузок в блок питания можно ввести ограничитель тока КЗ на полевом транзисторе КП302В. При выборе транзистора для других блоков следует учитывать его допустимую мощность и напряжение сток — исток.
Конечно, подобную автоматику можно ввести и в стабилизированный блок питания, не имеющий защиты от КЗ в нагрузке.

Регулятор для печки автомобиля

Отопительная система автомобиля состоит из радиатора, через который течет горячая охлаждающая жидкость и вентилятора, благодаря которому воздух поступает с улицы в салон. Регулировка печки осуществляется двумя органами:
— краном, благодаря которому изменяется напор жидкости протекающей через радиатор печки;
— переключателем, который регулирует скорость вращения вентилятора.

В подавляющим большинстве отечественных автомобилей, регулировка переключателем очень примитивна. При этом вентилятор работает создавая много шума, а уменьшить частоту вращения не представляется возможным. В автоматическом же режиме, частота вращения вентилятора так же не снижается, он просто периодически включается и выключается. И все же, данный вентилятор — это обычный двигатель постоянного тока, поэтому организовать плавную регулировку частоты вращения не так уж и сложно, для этого можно применить широтно-импульсный модулятор тока, протекающего через него.

Смысл в том, чтобы управление вентилятором осуществлять не при помощи переключателя, а при помощи переменного резистора. Регулировка будет плавной, от максимальной до некоторой минимальной, а в конце, при повороте ручки переменного резистора в сторону уменьшения питание мотора и вовсе будет полностью отключаться.

принципиальная схема регуляторя для печки автомобиля

Принципиальная схема расположена на рисунке выше, рассмотрим ее. Импульсы, широту которых можно регулировать переменным резистором, генерирует мультивибратор на элементах DD1.1 и DD1.2 микросхемы К561ЛН2. Очень желательно взять именно микросхему К561ЛН2, а не инверторы, такие как К561ЛА7, К561ЛЕ5. Дело в том, что выходы у инверторов К561ЛН2 наиболее мощные, плюс их не четыре, а шесть. Благодаря этому, есть возможность изготовить мультивибратор на двух элементах, а оставшиеся четыре объединить в мощный буфер, который будет драйвером для полевого транзистора VT1. Как многим известно, одной из проблем мощных полевых транзисторов является большая емкость затвора. Статически, сопротивление их затвора весьма высоко ( т.е. стремится к бесконечности), но в реальности, имеется очень существенная емкость затвор-исток, которая создает значительный бросок тока в тот момент, когда на затвор поступает высокий логический уровень. Поэтому здесь и необходим усиленный буферный каскад, который способен поглотить этот бросок тока.

Частота импульсов составляет порядка 15 кГц и зависит от емкости конденсатора C1 и половины сопротивления резистора R1. При регулировке резистора R1, частота практически не изменяется, однако изменяется скважность импульсов, так как изменяется сопротивление заряда-разряда конденсатора C1. Диоды VD1 и VD2 коммутируют части сопротивления для разных полуволн. Максимальная частота вращения вентилятора будет в нижнем (по схеме) положении резистора R1. При этом, длительность нулевого перепада на затворе VT1 будет минимальная, а длительность единичного перепада — максимальная. Резистор R3 используется для того, чтобы не нарушать режим работы элемента DD1.1, не допуская опасного для него состояния. Минимальная частота вращения вентилятора, в верхнем (по схеме) положении резистора R1. В этом случае подбором резистора R2 необходимо выбрать минимальную скорость вращения вентилятора, при которой он еще работает без перебоев и остановок. Подбирать резистор необходимо под каждый электродвигатель индивидуально. Как следствие сопротивление резистора R2 может получится совершенно иным, нежели указанном на схеме.

В данном схеме, используется резистор R1 с выключателем на одном валу. Его необходимо подключить так, чтобы выключатель SB1 выключался при повороте в крайнее верхнее (по схеме) положение резистора R1, то есть — меньше минимума. При вращении резистора R1 в выключенное состояние, контакты выключателя SB1 размыкаются и на объединенные входы элементов DD1.3-DD1.6 поступает напряжение логической единицы через резистор R4. В то время же время, на выходах DD1.3-DD1.6 будет логический ноль. Как следствие, транзистор VT1 будет закрыт и вентилятор M1 работать не будет.

Для включения вентилятора печки, необходимо повернуть резистор R1 из выключенного положения. После чего контакты выключателя SB1 замкнуться и на затвор транзистора VT1 начнут приходить импульсы, скважность которых будет соответствовать минимальной частоте вращения вентилятора ( которую предварительно необходимо задать подбором резистора R2). Если продолжать поворачивать резистор R1, то скважность импульсов поступающих на затвор транзистора VT1 будет увеличиваться, естественно будет возрастать и частота вращения вентилятора.

голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector