Как сделать своими руками регулятор мощности на симисторе
Как сделать своими руками регулятор мощности на симисторе
Приборы, которые работают на потреблении электрического тока, можно настраивать. Для этого существуют специальные регуляторы. Сегодня всё большую популярность набирает симисторный подтип. Его существенным отличием стало двухстороннее действие. Благодаря тому, что в приборе есть анод и катод, в процессе их передвижения появляется возможность изменять направления тока.
Не стоит думать, то этот элемент можно заменить контакторами, пускателями или реле. Именно симисторы отличаются долговечностью, детали на приборе практически не изнашиваются. Основным положительным моментом от использования симистора, стало полное отсутствие искры в электрических приборах. Были проанализированы схемы, в которых использовались симисторы двунаправленные, их стоимость была значительно меньше, чем те, которые базировались на транзисторах и микросхемах.
Плюсы и минусы использования симисторов
Среди основных преимуществ можно назвать следующие:
- минимальная стоимость прибора;
- длительный срок эксплуатации;
- возможность избежать механических контактов.
Есть и недостатки:
- чтобы не произошло перегрева прибора, необходимо обязательно устанавливать радиатор;
- симистор очень чувствителен к переходным процессам;
- нет возможности использовать на больших частотах;
- реагирует на посторонние помехи и шумы.
Особенности применения в электроприборах
Учитывая те показатели, которыми обладает симистор, его активно используют в работе приборов бытовой техники, таких как:
- осветительные приборы, которые можно регулировать;
- бытовые строительные электроинструменты;
- нагревательные приборы;
- приборы с наличием компрессора; , пылесосы, вентиляторы, фены.
Как сделать регулятор мощности своими руками
Сегодня есть возможность установки простых диммеров в электрические приборы. Рассмотрим несколько вариантов схем по установке симисторов.
Для паяльника
Для этого прибора есть возможность собрать устройство настройки мощности до 100 Вт, необходимо всего несколько деталей. Именно с помощью него можно контролировать температуру жала паяльника, яркость настольной лампы, скорость вращения вентилятора. Сам регулятор можно собрать на основе симистора ВТА 16600. Его отличительными чертами станет то, что в цепи управляющего электрода симистора будет находить неоновая лампа.
Если вы решите использовать именно такой вид, то необходимо правильно выбрать неоновую лампу, она должна иметь минимальные показатели напряжения пробоя. Это очень важно, так как именно этот показатель и будет влиять на плавность регулировки мощности лампы или паяльника. Если устанавливать стартер в светильник, здесь можно неоновую лампочку не применять.
Варианты схем
Схемы диммера являются сами простыми. В качестве диодного моста используются диоды Д226, обязательно включаются тиристор КУ202Н, который имеет свою цепь управления. Если вы хотите иметь до 9 фиксированных положений регулировки, то нужно немного усложнить схему и добавить элемент логики – счётчик К561ИЕ8. Здесь также регулировать нагрузку будет тиристор. В схеме после установки диодного моста будет находиться обычный параметрический стабилизатор, который будет подавать питание на микросхему. Необходимо правильно для такой схемы подобрать диоды, их мощность должна равняться нагрузке, которую будет настраивать аппарат.
Существует ещё один вариант составления схемы для регулировки мощности пальника. В самой схеме нет ничего сложного, никаких дорогих или дефицитных деталей. С помощью установки светодиода можно контролировать включение и выключение прибора. Допустимые параметры выходного напряжения варьируются в пределах от 130 до 220 вольт. Для всех приборов можно использовать специальный индикатор напряжения. Его можно взять из старых моделей магнитофонов. Для того чтобы усовершенствовать такую головку, можно добавить светодиод. Он покажет включение и выключение прибора и будет подсвечивать шкалу мощности.
Сборка прибора
Не стоит забывать, что для такого прибора должен быть подобран правильный корпус. Его можно изготовить из обычного пластика, так как его удобно и легко резать, гнуть, обрабатывать, склеивать. Из куска пластика необходимо вырезать заготовку, зачистить края, и с помощью клея собрать коробку. В неё вкладывается собранный диммер. Когда собран сам прибор регулирования мощности, то его необходимо проверить перед введением в эксплуатацию.
Для проверки можно использовать обычный паяльник или мультиметр. Эти проборы достаточно подключить к выходу схемы, и постепенно вращать ручку регулятора. Это даст возможность определить плавность изменения выходного напряжения. Если в устройстве вы установили светодиод, то по его яркости свечения можно определить уменьшение или увеличение выходного напряжения.
Настройка устройства
Существуют схемы регулировки мощности, при нагрузке до 500 Вт или при переменном токе в 220 В. Это могут быть домашние вентиляторы, электродрели. Здесь нужно использовать устройства широкого диапазона, большой мощности. Симисторный регулятор будет использоваться в качестве фазового управления. Основным назначением прибора будет изменение момента включения симистора относительно перехода сетевого напряжения через ноль.
Изначально, в периоде положительного полупериода симистор закрыт. Как только начнёт увеличиваться напряжение, конденсатор заряжается и делится в двух направлениях. По мере увеличения сетевого напряжения, напряжение на конденсате отстаёт на величину, суммарного сопротивления делителя и ёмкости. Конденсатор будет заряжаться до момента получения напряжения около 32 В. В этот момент происходит открытие динистора, а с ним и симистора. Тогда начнёт поступать равный суммарному сопротивлению симистора и нагрузки. Симистор будет открыт на весь полупериод. Таким образом, происходит регулировка мощности напряжения.
Собрать симисторный регулятор мощности достаточно просто, даже не обладая специальными знаниями. Гораздо сложнее чётко усвоить правила его эксплуатации. Чрезвычайно важно, чтобы вышеизложенные нюансы строго соблюдались. В ином случае, собственноручная конструкция не будет функционировать качественно и может принести проблемы, связанные с целостностью и эффективной эксплуатацией электроприборов.
Симисторный регулятор мощности
Всем привет. Настала очередь очередной электронной самоделки. Сегодняшняя статья будет посвящена симисторному регулятору мощности.
На страницах своего сайта я неоднократно публиковал разные тиристорные регуляторы мощности, например такой или такой. Тиристорные и симисторные регуляторы мощности имеют большую популярность, так как в изготовлении они очень просты и не требуют большого количества радиодеталей. Хоть и эти два полупроводниковых прибора имеют сходное назначение, регулировать мощность нагрузки, имеют разное устройство. Так тиристор способен пропускать ток через себя только в одном направлении, в тоже время симистор может работать в цепях переменного тока. Поэтому чтобы собрать регулятор мощности на тиристоре, в схему нужно будет добавить диодный мост, благодаря которому ток через тиристор будет двигаться в одном направлении. Главное достоинство симисторного регулятора мощности в том, что он может пропускать ток в обоих направлениях, поэтому его можно применять бес мощных силовых диодах.
Ну, давайте же перейдём к самому устройству, рассмотрим принципиальную схему регулятора мощности на симисторе.
Схема регулятора мощности на симисторе
Схема симисторного регулятора очень проста, содержит менее десяти распространённых радиодеталей. Готовое устройство практически не нуждается в настройке и после правильного монтажа начинает работать сразу:
Основным регулирующим элементом схемы является симистор BTA16. Этот симистор способен регулировать ток активной нагрузки мощностью до 3 кВт. Если требуется больше, нужно воспользоваться симистором большей мощности, например BTA25 с соответствующим радиатором охлаждения. Также в схеме используются корректирующие радиодетали: два резистора, один подстроечный резистор, один переменный, два конденсатора, один динистор.
Давайте более подробно рассмотрим устройство симисторного регулятора мощности.
Диммер своими руками, регулятор мощности на симисторе
Регулятор мощности не имеет дефицитных радиодеталей. Большинство из них можно выковырять из неисправного старого телевизора или любой другой бытовой техники. Например, динистор VD1 можно извлечь из неисправной энергосберегающей лампы.
Детали устройства:
- Симистор BTA16 или подобный
- Резистор 100 Ом 1 Ватт
- Резистор 4,7 килоом
- Подстроечный резистор 2 мегаом
- Переменный резистор 500 килоом
- Конденсатор 0,1 микрофарад 300 Вольт 2 штуки
- Динистор DB3
Чтобы упростить изготовление диммера своими руками, можно воспользоваться навесным монтажом. Что вполне приемлемо, так как количество деталей небольшое. Но гораздо проще приобрести симисторный регулятор мощности на известном китайском интернет-магазине, так как стоимость данного устройства невелика.
Все компоненты устройства расположены на печатной плате, выполненной из стеклотекстолита:
Симистор расположен хоть и не на большом, но достаточно эффективном радиаторе охлаждения, выполненном из алюминия:
Большинство элементов находятся в центре печатной платы и располагаются достаточно компактно:
Подстроечный резистор R4 расположен с краю печатной платы:
Напротив расположены две клеммные колодки для подключения в цепь. Чтобы не перепутать правильность подключения устройства, имеются соответствующие надписи:
Основной орган регулировки резистор R3 расположен на металлическом кронштейне, который обеспечивает необходимую надёжность готового изделия:
Готовое устройство получилось достаточно компактным, благодаря чему его можно использовать для регулировки практически любой активной нагрузки: лампы накаливания, нагревательные элементы, тэны:
Настройка симисторного регулятора мощности заключается в регулировке подстроечного резистора R4. При помощи него производится некоторая настройка устройства. Заключается она в следующем. Нужно движок переменного резистора R3 переместить в крайние положение, тем самым убавив регулятор на минимум, и подстраивая подстроечный резистор R4 добиться минимальной мощности отдаваемой в нагрузку. Основная настройка будет завершена. Если устройство собрано правильно, симисторный регулятор сразу начнёт работать.
При настройки устройства не забываем о безопасности.
Как я уже говорил, рассматриваемая самоделка подходит для регулировки мощности устройств, имеющих активное сопротивление. Для регулировки бытовых приборов имеющих реактивное сопротивление, например, таких как пылесос, я рекомендую использовать регулятор мощности на тиристоре, который я использую уже не один год, для регулировки оборотов пылесоса.
На этом я буду завершать своё повествование. Надеюсь, данная статья поможет вам в самостоятельном изготовлении симисторного регулятора мощности. До новых встреч. Всем пока.
Симисторный регулятор мощности, схема на КР1182ПМ1
Большое количество нагрузок требуют регулирования мощности, например такие:
- лампы накаливания или любые другие диммируемые;
- нагреватели;
- коллекторные электродвигатели и в частности электроинструмент.
Если до появления полупроводниковых элементов задачи регулировки мощности требовали применения громоздких электромагнитных устройств, то
с появлением тиристоров задача фазового регулирования мощности сильно упростилась. А вот симисторный регулятор мощности ещё проще тиристорного, ему не требуется выпрямителя. Симистор может проводить ток как в течении положительной полуволны переменного напряжения, так и в течении отрицательной.
Точно также как и тиристорный регулятор симисторный регулятор мощности осуществляет регулировку за счет изменения угла открывания. Чем больше угол ‘a’ тем меньше энергии попадает на выход устройства.
Схема получается настолько простой и дешевой что её стали встраивать даже в кнопки дешевых дрелей.
Таблица номиналов элементов
- C1 – 0,1 мк;
- R1 – переменный резистор 470 кОм;
- R2 – 10 кОм;
- VS1 – DB3;
- VS2 – BTA225-800B.
При данном типе VS2 cимисторный регулятор мощности способен отдавать в нагрузку до 25 А.
Удивительно, но схема содержит всего 5 элементов:
R1 и R2 – определяют скорость C1 и чем она будет больше тем скорее откроется симметричный динистор VS1 и откроет симистор VS2.
КР1182ПМ1
Отечественная промышленность выпускает специальную микросхему – фазовый регулятор КР1182ПМ1. Эта микросхема позволяет осуществлять фазовое регулирование как самостоятельно, при низких мощностях нагрузки до 150 Вт, так и совместно с тиристорами или симисторами при больших мощностях.
Внутренняя структура микросхемы КР1182ПМ1.
Микросхема предназначена для работы в диапазоне напряжений 80 – 276 В, тока до 1,2 А, мощности до 150 Вт и диапазоне температур от -40 до 70 гр. Цельсия.
Применение КР1182ПМ1 позволяет добиться высокой повторяемости скорости нарастания и спада напряжения.
Таблица номиналов элементов
- C1 – 47 мкФ 10В;
- C2, С3 – 1 мкФ 6,3 В;
- DA1 – КР1182ПМ1;
- R1 – переменный резистор 68 кОм;
- R2 – 470 Ом;
- S1 – кнопка выключения;
- VS1 – BT136-600E.
В приведенной схеме R1 и С1 определяют скорость нарастания выходного напряжения чем больше их значения тем дольше работа режима плавного пуска.
С2 и С3 нужны для работы самой микросхемы и должны быть тем больше чем больший ток коммутирует микросхема.
R2 – ограничивает ток через симистор VS1.
Но есть и недостатки у фазового регулятора мощности – помехи которые могут генерироваться в сеть при больших мощностях. На некоторых видах нагрузки, например нагреватели или двигатели с большим моментом инерции допустимо использовать и другие виды регулировки, например пропускать или не пропускать целые полупериоды или периоды сетевого напряжения. Преимущества данного способов в переключении тиристора в момент нулевых напряжений и токов. Однако управление таким способом более сложное и скорее всего потребует применение микроконтроллера.
22 thoughts on “ Симисторный регулятор мощности, схема на КР1182ПМ1 ”
Микросхема КР1182ПМ1 описание. Кстати полных зарубежных аналогов нету, разработка и выпуск отечественного ЗАО «НТЦ СИТ».
В маломощных (до 200 — 300 Вт) регуляторах лучше использовать транзисторные, а не симисторные схемы. Они не искажают форму сигнала (изменяется амплитуда, а не фаза) поэтому избавлены от помех.
- Pavel06.06.2016 в 11:07
Для прямого изменения амплитуды сетевого напряжения в регуляторах на транзисторах, уже при 50 ваттной нагрузке потребуется огромный радиатор.
Импульсные источники питания на транзисторах намного сложнее симисторных, и включают в себя преобразователь частоты, тоже создающий помехи, которые затем необходимо подавлять дополнительными фильтрами.
Симисторные регуляторы обладают высоким КПД, и часто работают вообще без радиаторов, они компактны и легки в регулировке.
Их особенно выгодно применять на повышенных мощностях, где коммутируются большие токи, например в сварочных аппаратах.
Что касается применения КР1182ПМ1, то если в самой нижней схеме R1 заменить на постоянный в 1М, и параллельно ему добавить фототранзистор, например КТФ102, то совместно с лампой можно получить автоматический регулятор освещения.
Ну, лампочке, к примеру, форма сигнала до лампочки, уж простите за каламбур. А чем меньше потребляемая мощность, тем меньше и помехи наводимые в сети. Двигатели электроинструмента и сами являются источниками помех, даже без регуляции. Так что вопрос целесообразности применения зависит больше от свойств нагрузки, а не от мощности.
В любом случае, будущее данного направления за частотными преобразователями, а не за фазовыми. Там и с КПД и с формой сигнала все хорошо… с ценой только плохо. Настолько плохо, что используются пока только в промышленности. В быту очень редко.
Цена сейчас определяющий фактор. Для мощных нагрузок симисторы дешевле, чем транзисторы и проще. Управление ими проще. Чаще всё равно требуется управлять двигателями или регулировать температуру. Помехи критичны в специализированной аппаратуре.
Собирал данную схему на панели для монтажа , что то не так сначала скачек напряжения до 80 вольт далее моментальное его падение до нуля и все…В чем проблемам может быть? в нагрузке была лампа на 60 ватт
- Дмитрий07.02.2018 в 14:05
Вход перепутан с выходом
При использовании транзисторов необходимы большие радиаторы, что делает схему громоздкой.
Ошибка в схеме. При подключении симистора перепутаны T1 и T2.
Ошибка в схеме. Плюс конденсатора С2 должен быть присоединен к 16-му выводу микросхемы.
данную схему собрал на зарубежном аналоге, как раз таки не создающем никаких помех (Недоработка нашего производителя)
- Михаил.23.08.2018 в 17:30
Подскажите,пожалуйста,марку зарубежного аналога.
- Серг07.07.2019 в 13:32
Анплогов нет. м.д. немножко пофантазировал
Здравствуйте коллеги! Ох и намучался я со схемой собранной по последнему рисунку (с микросхемой и симмистром ВТ136)… И так и сяк и нагрузку с другого плеча и резистор в цепь 9,10,11 ножек… И на другой микросхеме и симмистр менять пробовал… В нуле переменника горит в пол накала, потом сразу в полный при небольшом повороте. Всё наладилось когда взял симмистр другой — ВТА140. Сразу всё наладилась — и глубина регулировки и плавность… У кого-то получилось использовать в этой схеме ВТ136?
- Mell12.04.2020 в 09:13
ВТ136 вроде тиристор, а не симистор. См. даташит. Жж
Падение напряжения недопустимо высоко ? на нагрузке 170в при 215в в сети
Попробовал эту схему c симисторjv ВТВ12-600. Нагрузка — двигатель от электрорубанка.
Первое — симистор на схере неправильно включен. Нужно перевернуть его вверх тормашками.
Во вторых горит резистор R2. Быстро обугливается. резистор 0.5 Вт
Собирайте по даташиту там указаны все штатные схемы включения и будет Вам счастье собирал устройсво плавного пуска все хорошо
Переделал 12в шуруповёрт для работы от сети. Подключаю к самодельному зарядному 14.5в. Работает аж свистит. Нашёл в инете, что можно снизить напряжение диодом. Подскажите модель или х-ки диода. Сам что-то не могу выбрать.
Убогое подключение,так нельзя
Микросхемы КР1182ПМ1 допускают параллельное включение двух и более приборов, что позволяет увеличить выходную мощность регулятора. Устройство, схема которого изображена на рис. 4, может работать с нагрузкой, мощностью до 300 Вт.
Как регулировать напряжение симистором
Тиристоры нашли широкое применение в полупроводниковых устройствах и преобразователях. Различные источники питания, частотные преобразователи, регуляторы, возбудительные устройства для синхронных двигателей и много других устройств строились на тиристорах, а в последнее время их вытесняют преобразователи на транзисторах. Основной задачей для тиристора является включение нагрузки в момент подачи управляющего сигнала. В этой статье мы рассмотрим, как управлять тиристорами и симисторами.
Определение
Тиристор (тринистор) — это полупроводниковый полууправляемый ключ. Полууправляемый — значит, что вы можете только включать тиристор, отключается он только при прерывании тока в цепи или если приложить к нему обратное напряжение.
Он, подобно диоду, проводит ток только в одном направлении. То есть для включения в цепь переменного тока для управления двумя полуволнами нужно два тиристора, для каждой по одному, хотя не всегда. Тиристор состоит из 4 областей полупроводника (p-n-p-n).
Другой подобный прибор называется симистор — двунаправленный тиристор. Его основным отличием является то, что ток он может проводить в обе стороны. Фактически он представляет собой два тиристора соединённых параллельно навстречу друг другу.
Основные характеристики
Как и любых других электронных компонентов у тиристоров есть ряд характеристик:
1. Падение напряжения при максимальном токе анода (VT или Uос).
2. Прямое напряжение в закрытом состоянии (VD(RM) или Uзс).
3. Обратное напряжение (VR(PM) или Uобр).
4. Прямой ток (IT или Iпр) – это максимальный ток в открытом состоянии.
5. Максимально допустимый прямой ток (ITSM) — это максимальный пиковый ток в открытом состоянии.
6. Обратный ток (IR) — ток при определенном обратном напряжении.
7. Постоянный ток в закрытом состоянии при определенном прямом напряжении (ID или Iзс).
8. Постоянное отпирающее напряжение управления (VGT или UУ).
9. Ток управления (IGT).
10. Максимальный ток управления электрода IGM.
11. Максимально допустимая рассеиваемая мощность на управляющем электроде (PG или Pу)
Принцип работы
Когда на тиристор подают напряжение он не проводит ток. Есть два способа включит его – подать напряжение между анодом и катодом достаточное для открытия, тогда его работа ничем не будет отличаться от динистора.
Другой способ – это подать кратковременный импульс на управляющий электрод. Ток открытия тиристора лежит в пределах 70-160 мА, хотя на практике эта величина, как и напряжение которое нужно приложить к тиристору зависит от конкретной модели и экземпляра полупроводникового прибора и даже от условий, в которых он работает, таких, например, как температура окружающей среды.
Кроме управляющего тока, есть такой параметр как ток удержания — это минимальный ток анода для удержания тиристора в открытом состоянии.
После открытия тиристора управляющий сигнал можно отключать, тиристор будет открыт до тех пор, пока через него протекает прямой ток и подано напряжение. То есть в цепи переменного тиристор будет открыт в течении той полуволны напряжение которой смещает тиристор в прямом направлении. Когда напряжение устремится к нулю, снизится и ток. Когда ток в цепи упадет ниже величины тока удержания тиристора — он закроется (выключится).
Полярность управляющего напряжения должна совпадать с полярностью напряжения между анодом и катодом, что вы наблюдаете на осциллограммах выше.
Управление симистором аналогично хоть и имеет некоторые особенности. Для управления симистором в цепи переменного тока нужно два импульса управляющего напряжения — на каждую полуволну синусоиды соответственно.
После подачи управляющего импульса в первой полуволне (условно положительной) синусоидального напряжения ток через симистор будет протекать до начала второй полуволны, после чего он закроется, как и обычный тиристор. После этого нужно подать еще один управляющий импульс для открытия симистора на отрицательной полуволне. Это наглядно проиллюстрировано на следующих осциллограммах.
Полярность управляющего напряжения должна соответствовать полярности приложенного напряжения между анодом и катодом. Из-за этого возникают проблемы при управлении симисторами с помощью цифровых логических схем или от выходов микроконтроллера. Но это легко решается путем установки симисторного драйвера, о чем мы поговорим позже.
Распространенные схемы управления тиристорами или симисторами
Самой распространенной схемой является симисторный или тиристорный регулятор.
Здесь тиристор открывается после того как на конденсаторе будет достаточная величина для его открытия. Момент открытия регулируется с помощью потенциометра или переменного резистора. Чем больше его сопротивление — тем медленнее заряжается конденсатор. Резистор R2 ограничивает ток через управляющий электрод.
Эта схема регулирует оба полупериода, то есть вы получаете полную регулировку мощности почти от 0% и почти до 100%. Это удалось достичь, установив регулятор в диодном мосте, таким образом регулируется одна из полуволн.
Упрощенная схема изображена ниже, здесь регулируется лишь половина периода, вторая полуволна проходит без изменения через диод VD1. Принцип работы аналогичен.
Симисторный регулятор без диодного моста позволяет управлять двумя полуволнами.
По принципу действия почти аналогична предыдущим, но построена на симисторе с её помощью регулируются уже обе полуволны. Отличия заключаются в том, что здесь импульс управления подаётся с помощью двунаправленного динистора DB3, после того как конденсатор зарядится до нужного напряжения, обычно это 28-36 Вольт. Скорость зарядки также регулируется переменным резистором или потенциометром. Такая схема реализована в большинстве бытовых диммеров.
Интересно:
Такие схемы регулировки напряжения называется СИФУ — система импульсного фазового управления.
На рисунке выше изображен вариант управления симистором с помощью микроконтроллера, на примере популярной платформы Arduino. Симисторный драйвер состоит из оптосимистора и светодиода. Так как в выходной цепи драйвера установлен оптосимистор на управляющий электрод всегда подаётся напряжение нужной полярности, но здесь есть некоторые нюансы.
Дело в том, что для регулировки напряжения с помощью симистора или тиристора нужно подавать управляющий сигнал в определенный момент времени, так чтобы срез фазы происходил до нужной величины. Если наугад стрелять управляющими импульсами — схема работать конечно будет, но регулировок добиться не выйдет, поэтому нужно определять момент перехода полуволны через ноль.
Так как для нас не имеет значения полярность полуволны в настоящий момент времени — достаточно просто отслеживать момент перехода через ноль. Такой узел в схеме называют детектор нуля или нуль-детектор, а в англоязычных источниках «zero crossing detector circuit» или ZCD. Вариант такой схемы с детектором перехода через ноль на транзисторной оптопаре выглядит следующим образом:
Оптодрайверов для управления симисторами есть множество, типовые – это линейка MOC304x, MOC305x, MOC306X, произведенные компанией Motorola и другими. Более того – эти драйверы обеспечивают гальваническую развязку, что убережет ваш микроконтроллер в случае пробоя полупроводникового ключа, что вполне возможно и вероятно. Также это повысит безопасность работы с цепями управления, полностью разделив цепь на «силовую» и «оперативную».
Заключение
Мы рассказали базовые сведения о тиристорах и симисторах, а также управлении ими в цепях с «переменкой». Стоит отметить, что мы не затрагивали тему запираемых тиристоров, если вас интересует этот вопрос – пишите комментарии и мы рассмотрим их подробнее. Также не были рассмотрены нюансы использования и управления тиристорами в силовых индуктивных цепях. Для управления «постоянкой» лучше использовать транзисторы, поскольку в этом случае вы решаете, когда ключ откроется, а когда он закроется, повинуясь управляющему сигналу…
Ранее ЭлектроВести писали, п очему в современных инверторах используют транзисторы, а не тиристоры.