Setting96.ru

Строительный журнал
1 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Схема подключения регулятора вентилятора

Схема подключения регулятора вентилятора

Нередко в домашнем хозяйстве требуется установка регулятора скорости вращения вентилятора. Сразу следует отметить, что обычный диммер для регулировки яркости освещения не подойдет для вентилятора. Современному электродвигателю, особенно асинхронному, важно иметь на входе правильной формы синусоиду, но обычные диммеры для освещения искажают ее довольно сильно. Для эффективной и правильной организации регулировки скорости вентиляторов необходимо:

регуляторы оборотов для вентилятора

  1. Использовать специальные регуляторы, предназначенные для вентиляторов.
  2. Учитывайте, что эффективно и безопасно регулировке поддаются только специальные модели асинхронных электромоторов, поэтому перед покупкой узнавайте из технических характеристик о возможности регулировки числа оборотов методом понижения напряжения.

Способы регулировки скорости вращения бытовых вентиляторов

Существует достаточно много различных способов регулировки частоты вращения вентилятора, но практически применяются в домашних условиях только два из них. В любом случае Вы сможете только понизить число оборотов вращения двигателя только ниже максимально возможной по паспорту к устройству.

Разогнать электродвигатель возможно только с использованием частотного регулятора, но он не применяется в быту, потому что у него высокая как собственная стоимость, так и цена на услугу по его установке и наладке. Все это делают использование частотного регулятора не рациональным в домашних условиях.

К одному регулятору допускается подключение нескольких вентиляторов, если только их суммарная мощность не будет превышать величину номинального тока регулятора. Учитывайте при выборе регулятора, что пусковой ток электродвигателя в несколько раз выше рабочего.

Способы регулировки вентиляторов в быту:

схема подключения многоскростного вентилятора

  1. С использованием симисторного регулятора скорости вентилятора- это самый распространенный способ, позволяющий постепенно увеличивать или уменьшать скорость вращения в пределах от 0 до 100 %.
  2. Если электродвигатель вентилятора на 220 Вольт оборудован термозащитой (защитой от перегрева), тогда для управления оборотами применяется тиристорный регулятор.
  3. Наиболее эффективным методом регулировки скорости вращения электродвигателя является применение моторов с несколькими выводами обмоток. Но многоскоростные электродвигатели в бытовых вентиляторах Я пока не встречал. Но В интернете можно найти схемы подключения для них.

Очень часто электродвигатель гудит на низких оборотах при использовании первых двух методов регулировки- старайтесь не эксплуатировать долго вентилятор в таком режиме. Если снять крышку, то при помощи находящегося под ней специального регулятора, Вы сможете, его вращая, установить нижний предел частоты вращения мотора.

Схема подключения симисторного или тиристорного регулятора скорости вентилятора

Практически во всех регуляторах стоят внутри плавкие ставки, защищающие их от токов перегрузки или короткого замыкания, при возникновении которых она перегорает. Для восстановления работоспособности необходимо будет заменить или отремонтировать плавкую ставку.

Подключается регулятор довольно просто, как обычный выключатель. На первый контакт (с изображением стрелки) подключается фаза от электропроводки квартиры. На второй (с изображением стрелки в обратном направлении) при необходимости подключается прямой вывод фазы без регулировки. Он используется для включения, например дополнительно освещения при включении вентилятора. На пятый контакт (с изображением наклонной стрелки и синусоиды) подключается фаза, отходящая на вентилятор.схема подключения регулятора вентилятора При использовании такой схемы необходимо использовать для подключения распределительную коробку, с которой Ноль и при необходимости Земля заводятся напрямую на вентилятор, минуя сам регулятор, для подключения которого понадобится всего-то 2 провода.

Но если распределительная коробка электропроводки находится далеко, а сам регулятор стоит рядом с вентилятором, тогда рекомендую использовать вторую схему. На регулятор приходит кабель электропитания, а затем с него уходит сразу на вентилятор. Фазные провода подключаются аналогично. А 2 нуля садятся на контакты № 3 и № 4 в любой последовательности.схема 2 подключения регулятора вентилятора

Подключение регулятора скорости вращения вентилятора довольно просто сделать и своими руками, не вызывая специалистов. Обязательно изучите и всегда соблюдайте правила электробезопасности- работайте только на обесточенном участке электропроводки.

Здравствуйте!
Почему электродвигатель вентилятора гудит, если сразу включить его регулятором на минимальных оборотах?

Добрый вечер! При запуске электродвигатель потребляет большой ток, поэтому сразу при запуске необходимо установить максимальные обороты, а затем снижать скорость вращения до необходимой величины.

а что именно в нём гудит, что создаёт вибрацию? пусковой ток электромеханически «давит» на обмотки? хотеось бы разъяснить этот момент.

Комментарий от 16 октября писал другой «бывалый». Я бы ответил по другому. При запуске двигатель действительно потребляет большой пусковой ток, но не это причина запуска на максимальных оборотах. Дело в том, что асинхронные двигатели при низких оборотах или когда ротор не вращается имеют совсем другой режим работы, по сути, режим короткого замыкания. Как известно (или должно быть вам известно), индуктивное сопротивление состоит из активного и реактивного. В двигателе, который вышел на нормальный режим преобладает реактивное сопротивление, оно же по сути, генерирует магнитное поле, которое создает электродвижущую силу. В пусковой момент, или когда ротор двигателя не вращается, реактивного (индуктивного) сопротивления практически нет, остается только активное, а активное сопротивление всегда тратит электроэнергию только на нагрев и не несет никакой полезной нагрузки. Следовательно, когда вы включаете двигатель на минимальных оборотах, токи очень маленькие, их недостаточно, чтобы развить эдс, способную начать раскручивать ротор двигателя, но то при этом переменный, что еще сильнее ухудшает положение, то есть, если бы ток был бы постоянный, то ЭДС была бы направлена строго в одну сторону, но поскольку ток переменный, то ЭДС меняет свое направление 100 раз в секунду. Именно это изменение направления в виде гула (это ротор 100 раз в секунду пытается крутиться в одну или в другую сторону) мы и слышим в этот момент. Если же это трехфазный двигатель, то недостаток напряжения, несмотря на создание кругового магнитного поля (на самом деле треугольного, круговым оно называется, потому что ток в фазах как бы дополняет друг друга), напряжение переменное, то есть, 100 раз в секунду оно равняется нулю, но есть еще и такое понятие, как противоЭДС. Она препятствует ЭДС. И тут возникает такая ситуация, когда мы подаем полное напряжение и довольно большие токи «передавливают» противо ЭДС, но при малых напряжениях, этого не происходит и результирующий магнитный поток, который должен начать вращать ротор, практически равен нулю, но точно так же меняет направление 100 раз в секунду и опять же создает гул, но не способно начать вращать ротор. И кстати, в двигателе нет электромеханических связей. Электромеханика, это когда двигатель будет приводить в действие механизм, а когда ток катушки приводит в действие ротор, это происходит за счет электромагнитной работы.

Добрый день! подскажите пожалуйста, чайнику. по второму варианту подключения регулятора — я правильно понял, необходимо в розетке определить фазу и ноль, и согласно этому — подключать? что будет если я например, вилку подключу в электроразетку под другому, т.е. фаза и ноль будут идти в регулятор так- где на схеме фаза, туда пойдет ноль, а где ноль- туда пойдет фаза?

Вадим, здравствуйте. Ничего особо не изменится, кроме того, что вы будете разрывать не фазу, а ноль. А конкретно вентилятору это по барабану. Переменный ток меняет свое значение с плюса на минус 100 раз в секунду. А вращение вентилятора задается способом намотки и включением конденсатора.

Регулировка оборотов электродвигателя 220В, 12В и 24В

Для плавности увеличения и уменьшения скорости вращения вала существует специальный прибор – регулятор оборотов электродвигателя 220в. Стабильная эксплуатация, отсутствие перебоев напряжения, долгий срок службы – преимущества использования регулятора оборотов двигателя на 220, 12 и 24 вольт.

Способы изменения вращения зависят от модели электрической машины. Характеристики электрических машин отличаются: постоянного и переменного тока, однофазные, трехфазные. Поэтому говорить нужно о каждом случае отдельно.

Простейший вариант

Простейший вариант изменения оборотов электродвигателяЛегче всего изменять обороты электродвигателя постоянного тока. Они меняются простым изменением напряжения питания. Причем неважно где: на якоре или на возбуждении, но это касается только маломощных машин с минимальной нагрузкой. В основном управление скоростью вращения производят по цепи якоря. Более того, здесь возможно реостатное регулирование, если мощность мотора небольшая, или есть довольно мощный реостат.

Это самый неэкономичный вариант. Механические характеристики двигателя с независимым возбуждением самые невыгодные из-за больших потерь, результатом чего является падение механической мощности, КПД.

Еще одна возможность – введение реостата в обмотку возбуждения. Рассматривая характеристики двигателя с независимым возбуждением, увидим, что регулирование скорости вращения возможно только в сторону увеличения оборотов. Это происходит ввиду насыщения обмотки.

Итак, реостатное регулирование скорости вращения аппарата независимого возбуждения оправдано в системах с минимальной нагрузкой. Лучше всего, когда работа при таком включении буде периодической.

В цепи якоря

Схема подключения цепи якоря к источнику напряжения

Это лучший вариант регулирования скорости мотора с независимым возбуждением. Частота вращения прямо пропорциональна подводимому к якорю напряжению. Механические характеристики не меняют своего угла наклона, а перемещаются параллельно друг другу.

Для осуществления этой схемы нужно цепь якоря подключить к источнику напряжения, которое можно менять.

Это возможно в электрических машинах малой или средней мощности. Двигатель большой мощности целесообразно подключить в схему с генератором напряжения независимого возбуждения.

Схема «двигатель-генератор»

В качестве привода для генератора используют обычный трехфазный асинхронник. Чтобы уменьшить обороты, достаточно на якоре понизить напряжение. Оно меняется от номинального и вниз. Эта схема имеет название «двигатель-генератор». Таким образом можно менять параметры на двигателе 220в.

Для низкого напряжения

Управление агрегатами на 12в проще из-за более низкого напряжения и как следствие, более доступных деталей. Вариантов подобных схем множество, поэтому важно понять сам принцип.

Такой двигатель имеет ротор, щеточный механизм и магниты. На выходе у него всего два провода, контролирование скорости идет по ним. Питание может быть 12, 24, 36в, или другое. Что нужно – это его менять. Лучше, когда в пределах от нуля до максимума. В более простых вариантах 12–0в не получится, другие варианты дают такую возможность.

Читать еще:  Как отрегулировать двери шкафа купе все тонкости настройки

Кто-то паяет радиоэлементы навесным монтажом, кто-то набирает печатную плату – это уже зависит от желания и возможностей каждого человека.

Схема для низкого напряжения

Этот вариант подойдет, если точность неважна: например, вентилятор. Напряжение меняется от 0 до 12 вольт, пропорционально меняется крутящий момент.

Другой вариант – со стабилизацией оборотов независимо от нагрузки на валу.

Схема со стабилизацией оборотов независимо от нагрузки на валу

Питание 12 вольт, схема очень проста. Двигатель набирает обороты плавно, и также плавно их сбавляет так как напряжение на выходе меняется в пределах 12–0в. Как результат – можно убрать крутящий момент практически до нуля. Если потенциометр крутить в обратном направлении, мотор так же постепенно набирает обороты до максимума. Микросхема очень распространенная, ее характеристики тоже подробно описаны. Питание 12–18в.

Есть еще один вариант, только это уже не для 12, а для 24в питания.

Схема со стабилизацией оборотов независимо от нагрузки на валу на 24В

Двигатель постоянного тока, питание – переменное, так как стоит диодный мост. При желании можно мост выбросить и запитывать постоянкой от своего блока питания.

От сети

Однофазные электродвигатели переменного тока также позволяют регулировать вращение ротора.

Коллекторные машины

Схема для изменения оборотов на коллекторных машинах

Такие моторы стоят на электродрелях, электролобзиках и другом инструменте. Чтобы уменьшить или увеличить обороты, достаточно, как и в предыдущих случаях, изменять напряжение питания. Для этой цели также есть свои решения.

Конструкция подключается непосредственно к сети. Регулировочный элемент – симистор, управление которого осуществляется динистором. Симистор ставится на теплоотвод, максимальная мощность нагрузки – 600 Вт.

Если есть подходящий ЛАТР, можно все это делать при помощи его.

Двухфазный двигатель

Схема на двухфазный двигатель

Аппарат, имеющий две обмотки – пусковую и рабочую, по своему принципу является двухфазным. В отличие от трехфазного имеет возможность менять скорость ротора. Характеристика крутящегося магнитного поля у него не круговая, а эллиптическая, что обусловлено его устройством.

Есть две возможности контролирования числа оборотов:

  1. Менять амплитуду напряжения питания (Uy),
  2. Фазное – меняем емкость конденсатора.

Такие агрегаты широко распространены в быту и на производстве.

Обычные асинхронники

Электрические машины трехфазного тока, несмотря на простоту в эксплуатации, обладают рядом характеристик, которые нужно учитывать. Если просто изменять питающее напряжение, будет в небольших пределах меняться момент, но не более. Чтобы в широких пределах регулировать обороты, необходимо довольно сложное оборудование, которое просто так собрать и наладить сложно и дорого.

Схема работы преобразователя частоты

Для этой цели промышленностью налажен выпуск частотных преобразователей, помогающих менять обороты электродвигателя в нужном диапазоне.

Асинхронник набирает обороты в согласии с выставленными на частотнике параметрами, которые можно менять в широком диапазоне. Преобразователь – самое лучшее решение для таких двигателей.

Выбираем устройство

Для того чтобы подобрать эффективный регулятор необходимо учитывать характеристики прибора, особенности назначения.

  1. Для коллекторных электродвигателей распространены векторные контроллеры, но скалярные являются надёжнее.
  2. Важным критерием выбора является мощность. Она должна соответствовать допустимой на используемом агрегате. А лучше превышать для безопасной работы системы.
  3. Напряжение должно быть в допустимых широких диапазонах.
  4. Основное предназначение регулятора преобразовывать частоту, поэтому данный аспект необходимо выбрать соответственно техническим требованиям.
  5. Ещё необходимо обратить внимание на срок службы, размеры, количество входов.

Прибор триак

Устройство симистр (триак) используется для регулирования освещением, мощностью нагревательных элементов, скоростью вращения.

Схема прибора триак

Схема контроллера на симисторе содержит минимум деталей, изображенных на рисунке, где С1 – конденсатор, R1 – первый резистор, R2 – второй резистор.

С помощью преобразователя регулируется мощность методом изменения времени открытого симистора. Если он закрыт, конденсатор заряжается посредством нагрузки и резисторов. Один резистор контролирует величину тока, а второй регулирует скорость заряда.

Когда конденсатор достигает предельного порога напряжения 12в или 24в, срабатывает ключ. Симистр переходит в открытое состояние. При переходе напряжения сети через ноль, симистр запирается, далее конденсатор даёт отрицательный заряд.

Преобразователи на электронных ключах

Тиристорные регуляторы мощности являются одними из самых распространенных, обладающие простой схемой работы.

Тиристор ку202н и его схема

Тиристор, работает в сети переменного тока.

Отдельным видом является стабилизатор напряжения переменного тока. Стабилизатор содержит трансформатор с многочисленными обмотками.

Схема стабилизатора постоянного тока

Схема стабилизатора постоянного тока

Зарядное устройство 24 вольт на тиристоре

Зарядное устройство 24 вольт на тиристоре

Принцип действия заключаются в заряде конденсатора и запертом тиристоре, а при достижении конденсатором напряжения, тиристор посылает ток на нагрузку.

Процесс пропорциональных сигналов

Сигналы, поступающие на вход системы, образуют обратную связь. Подробнее рассмотрим с помощью микросхемы.

Микросхема TDA 1085

Микросхема TDA 1085

Микросхема TDA 1085, изображенная выше, обеспечивает управление электродвигателем 12в, 24в обратной связью без потерь мощности. Обязательным является содержание таходатчика, обеспечивающего обратную связь двигателя с платой регулирования. Сигнал стаходатчика идёт на микросхему, которая передаёт силовым элементам задачу – добавить напряжение на мотор. При нагрузке на вал, плата прибавляет напряжение, а мощность увеличивается. Отпуская вал, напряжение уменьшается. Обороты будут постоянными, а силовой момент не изменится. Частота управляется в большом диапазоне. Такой двигатель 12, 24 вольт устанавливается в стиральные машины.

Своими руками можно сделать прибор для гриндера, токарного станка по дереву, точила, бетономешалки, соломорезки, газонокосилки, дровокола и многого другого.

Микросхема U2008B

Промышленные регуляторы, состоящие из контроллеров 12, 24 вольт, заливаются смолой, поэтому ремонту не подлежат. Поэтому часто изготавливается прибор 12в самостоятельно. Несложный вариант с использованием микросхемы U2008B. В регуляторе используется обратная связь по току или плавный пуск. В случае использования последнего необходимы элементы C1, R4, перемычка X1 не нужна, а при обратной связи наоборот.

При сборе регулятора правильно выбирать резистор. Так как при большом резисторе, на старте могут быть рывки, а при маленьком резисторе компенсация будет недостаточной.

Важно! При регулировке контроллера мощности нужно помнить, что все детали устройства подключены к сети переменного тока, поэтому необходимо соблюдать меры безопасности!

Регуляторы оборотов вращения однофазных и трехфазных двигателей 24, 12 вольт представляют собой функциональное и ценное устройство, как в быту, так и в промышленности.

Измерения

Понятно, что число оборотов нужно как-то определять. Для этого используют тахометры. Они показывают число вращения на данный момент. Обычным мультиметром просто так измерить скорость не получится, разве что на автомобиле.

Как видно, на электрических машинах можно менять различные параметры, подстраивая их под нужды производства и домашнего хозяйства.

Схемы регуляторов скорости вращения вентилятора на 220 В

Регулятор скорости и оборотов РС 1 300 (RS 1 300)

Для эффективного режима работы вентилятора, получающего питание от промышленной сети, применяют регулятор скорости вращения. Вентилятор на 220 Вольт, использующий регулировку, может стать практически бесшумными и повысить комфортность обслуживаемого им помещения. Чтоб регулировать обороты, необязательно покупать готовый прибор, даже без специальных знаний его несложно собрать самостоятельно.

Принцип работы вентилятора

Подключение регулятора скорости

Согласно техническому определению, вентилятор — это прибор, служащий для перемещения газа путём создания избыточного давления или разрежения. По своему конструктивному исполнению он разделяется на осевой и радиальный. Практически все вентиляторы, применяемые в быту, представляют собой осевой тип конструкции. Использование этого вида характеризуется удобством получения направленного воздуха различной силы и давления. Вентиляторы разделяют по месту использования, они могут быть:

  • многозональные;
  • канальные;
  • напольные;
  • потолочные;
  • оконные.

Осевой вентилятор

Осевые, иное название аксиальные, вентиляторы в качестве основного узла используют рабочее колесо. Это колесо располагается на оси электродвигателя, содержит внешний ротор и имеет в своей конструкции лопатки, расположенные под углом с учётом аэродинамических свойств. Благодаря такому расположению и происходит создание и формирование воздушного потока.

В качестве электродвигателя применяют однофазный асинхронный двигатель, ось которого повторяет движения нагнетаемого или разряжаемого им потока воздуха. Такой электромотор состоит из ротора, размещённого внутри статора. Промежуток между ними составляет не более двух миллиметров. Статор имеет вид сердечника с пазами, через которые намотана обмотка. Ротор выглядит как подвижная часть с валом, содержащая в своём составе сердечник с короткозамкнутой обмоткой. Такая конструкция напоминает беличье колесо.

Центробежный вентиляционный блок.

При подаче переменного тока на обмотку статора, согласно законам физики, появляется переменный магнитный поток. На помещённом внутрь этого потока замкнутом проводнике возникает электромагнитная индукция (ЭДС), а значит, появляется и ток. Благодаря чему в переменном магнитном поле оказывается проводник с током. Это приводит к вращению проводника, то есть ротора.

Таким образом, чтоб создать регулятор оборотов вентилятора на 220 В, понадобится изменять величину воздействующего на ротор магнитного поля. В свою очередь, значение магнитного поля зависит от величины тока, а значит при снижении его величины уменьшается и скорость вращения.

Ещё один параметр, от которого зависит число оборотов электродвигателя, является частота переменного напряжения. Частотные преобразователи, изменяющие частоту, характеризуются сложностью изготовления и дороговизной, по сравнению с изменяющими уровень напряжения. В бытовых условиях применяются редко, хоть позволяют достигать лучших результатов в точности настройки.

По виду используемой схемотехники приборы, управляющие скоростью вращения, разделяются на:

  • тиристорные;
  • трансформаторные.

Схемы вращения

Регулятор оборотов электродвигателя

Так как в основе работы вентилятора используется явление ЭДС, то это приводит к тому, что возникают паразитные вихревые токи, нагревающие металлические части электродвигателя, при изменении формы сигнала напряжения сети. Использование диммеров, служащих для управления светосилой яркости ламп, не рекомендуется из-за повышенного нагрева двигателя. Поэтому при изготовлении регулятора скорости вентилятора на 220 В, применяются полупроводниковые элементы.

Регулятор скорости на симисторе

Подключение симисторного управляющего блока

Регулирующим полупроводником служит симистор. Работает он в ключевом режиме, то есть или включён, или выключен. Симистор состоит из двух тиристоров, включённых встречно — параллельным способом. Каждый тиристор пропускает через себя только одну полуволну сигнала. Такая схема обладает маленькими размерами и имеет низкую стоимость.

В таком регуляторе используется принцип фазового управления, изменение момента включения и выключения симистора относительно фазового перехода в нулевой точке.

Читать еще:  Как отрегулировать кулер для воды

Подключение простейшего управляющего блока

Управление симистором осуществляется с помощью переменного резистора, в зависимости от поворота последнего задаётся порог срабатывания полупроводникового прибора. В результате чего отсекается часть синусоидального сигнала, поступающего на электродвигатель вентилятора, величина значение напряжения уменьшается и соответственно обороты двигателя тоже уменьшаются.

При управлении частотой вращения электродвигателя контроль работы тиристора происходит длительными импульсами.

Благодаря чему, кратковременные отключения активной нагрузки не изменяют режим работы схемы. Схема подразумевает разделение включения электродвигателя с тиристором VS2 и питающего напряжения 220 вольт, через диодный мост.

Управление тиристором осуществляется с помощью генератора, собранного на транзисторе VT1. Питание генератора реализуется сигналом трапециевидной формы, полученным после прохождения через стабилитрон VD1 с частотой 100 кГц. В то время как на конденсаторе C1 появится напряжение, величины которого станет достаточно для открытия транзистора, на управляющий электрод тиристора поступит положительный сигнал. Тиристор VS2 откроется и с него поступит напряжение на электродвигатель, приводящее к его запуску.

Резисторы R1, R2, R3, образуют цепочку разряда конденсатора C1. Управляя значением сопротивления R1, в качестве которого используется переменный резистор, изменяется скорость разряда конденсатора, а значит и частота оборотов вентилятора. Диод VD2, подключённый параллельно к обмотке L1, предотвращает ложное срабатывание тиристора, возникающее из-за использования нагрузки индуктивного рода.

Управление с использованием автотрансформатора

В качестве основного элемента схемы используется автотрансформатор. Он представляет собой трансформатор, в котором соединение первичной и вторичной обмотки выполнено напрямую. В результате чего одновременно осуществляется магнитная и электрическая связь. Обмотка автотрансформатора имеет несколько ответвлений с разными на них значениями величины напряжения. Преимущество такого использования заключается в достижении более высокого коэффициента полезного действия из-за преобразования лишь части мощности.

Принцип работы регулятора, скорости вращения вентилятора состоит в следующем. На первичную обмотку автотрансформатора T1 поступает питающее напряжение сети. Обмотка имеет как минимум три ответвления от части витков. При подсоединении нагрузки к разным ответвлениям получается уменьшенное напряжение питания. Используя переключатель SW1, двигатель вентилятора M коммутируется к одной из части обмотки, при этом его скорость вращения меняется. При такой работе выходной сигнал не изменяет своей формы, оставаясь синусоидальным, что положительно влияет на обмотки двигателя.

Переключатель представляет собой ступенчатую шкалу, не позволяя плавно управлять скоростью вращения. Устройства такого типа имеют большие габариты и массу, по сравнению с другими видами.

Усовершенствованной моделью является использование электронного управления.

В основе работы лежит принцип широтно-импульсной модуляции. Изменяя состояние режима работы ключевых транзисторов, образовываются импульсы, позволяющие совершать плавную регулировку выходного сигнала. Чем меньше длительность импульса и длиннее период, тем меньше мощности передаётся вентилятору, а значит и обороты вращения его снижаются. В качестве ключей применяются малошумящие полевые транзисторы, имеющие значительно большие входные сопротивления по сравнению с биполярными.

Из-за плохой помехозащищенности узел автотрансформатора выполняется непосредственно в близости от вентилятора, но обладает компактными размерами и невысокой стоимостью.

Покупка готового регулятора

Подключение регуляторов осуществляется последовательно перед электродвигателем вентилятора в разрыв цепи. В зависимости от своего вида, прибор может располагаться в любом удобном месте, встраиваться в щиток на DIN рейку, монтироваться вместо розетки, быть отдельно стоящим блоком. При этом сам блок управления и пульт регулировки могут быть как совмещены, так и разделены между собой в пространстве.

В торговых точках представлены регуляторы различного вида и ценовой стоимости в зависимости от плавности регулировки, места расположения, дополнительных функций. Наиболее популярными производителями являются:

  • Selpo.
  • Vents.
  • Vortice.
  • Soler & Palau.
  • Venmatika.
  • ЭРА.

Некоторые приборы оснащаются дополнительными функциями в виде подсветки или цифрового экрана, показывающего процентное содержание установленной скорости от максимума. Переключение скорости, в зависимости от схемотехники устройства, производится поворотом ручки с помощью галетного переключателя или кнопками.

Существуют устройства, позволяющие одним регулятором управлять сразу несколькими вентиляторами, при этом важно, чтобы общий ток не превышал ток регулятора. В них можно установить время выключения регулятора, обычно в диапазоне одного часа. Подключённое устройство запоминает и сохраняет настройки даже при его выключении.

Управлять скоростью вращения вентилятора можно используя несложные приборы, которые легко собираются самостоятельно. Затратив немного времени, получится сэкономить на покупке готового устройства.

При самостоятельном изготовлении, конечно, важно соблюдать технику безопасности, так как существует возможность попадания под опасное напряжение сети. При отсутствии желания или возможности приобретается готовое устройство, работа которого будет подкреплена гарантией от производителя. Купленное устройство имеет вид полностью законченного и эстетически оформленного прибора.

Как настроить скорость вращения кулеров компьютера

kak nastroit skorost kulerov pc

Температура напрямую влияет на качество и продолжительность работы элементов компьютера. Именно поэтому важно контролировать грамотность работы системы охлаждения. В ней не должна скапливаться пыль, все вентиляторы компьютера обязаны работать в штатном режиме, при необходимости повышая обороты во время серьезных нагрузок.

Большая часть пользователей работают за компьютером в стандартном режиме, не нагружая компоненты в производительных играх и приложениях. При этом кулеры на компьютере могут быть не настроены, и в такой ситуации они будут работать на максимальных или близким к максимальным оборотах. Чтобы снизить шум при работе компьютера, нужно настроить работу кулеров, снизив скорость вращения их вентиляторов.

Как можно регулировать скорость кулеров компьютера

Скорость вращения вентиляторов охлаждения компьютера изначально задается на уровне материнской платы. Она определяется в BIOS, и довольно часто выставленные автоматически настройки оказываются неправильными. В большинстве случаев скорость вращения кулеров устанавливается максимальной, из-за чего компьютер сильно шумит в процессе работы, но при этом не нуждается в столь серьезном охлаждении.

Можно выделить 3 основных способа настройки скорости вращения кулеров компьютера:

    В BIOS. Неудобный вариант, поскольку для захода в BIOS требуется перезагрузка компьютера. Кроме того, не все версии BIOS имеют опции, изменив которые пользователь может настроить скорость вращения вентиляторов;
  • В корпусе. Максимально неудобный способ, который предполагает физическое отключение «лишних» кулеров. При их отключении и работе других на полную мощность в корпусе компьютера можно поддерживать нормальную рабочую температуру;
  • Программно. Используя специальные приложения для Windows, позволяющие регулировать скорость работы кулеров. Наиболее удобный способ, поскольку настраивать скорость вращения вентиляторов можно напрямую из операционной системы.

В рамках данной статьи будет рассмотрен именно третий вариант программной регулировки скорости вращения кулеров компьютера.

Как настроить скорость вращения кулеров компьютера

kak nastroit skorost kulerov pc

Существуют сотни приложений, которые позволяют настраивать скорость вращения кулеров компьютера. При этом некоторые программы разрешают регулировать только обороты вентиляторов только определенных компонентов.

Из наиболее удобных и простых программ для настройки скорости вращения кулеров компьютера можно выделить SpeedFan. Приложение бесплатное, и его можно загрузить с сайта разработчиков или из других проверенных источников в интернете. После загрузки программы ее потребуется установить, а далее запустить. При первом запуске программы SpeedFan может появиться информационное сообщение, которое потребуется закрыть.

Проверка скорости вращения кулеров

Далее запустится непосредственно сама программа SpeedFan, в которой имеется несколько опций. Рассмотрим те из них, которые расположены на первой вкладке «Readings»:

  • Minimize. Нажав на данную кнопку, приложение свернется в панель уведомлений;
  • Configure. Открывает подробные настройки приложения;

kak regulirovat skorost kulerov

kak regulirovat skorost kulerov

Далее следует блок из показателей скорости вращения кулеров (измеряется в RPM – количество оборотов за минуту) и температуры компонентов компьютера. Разберемся с тем, что обозначает каждый из показателей:

  • SysFan – скорость вращения кулера, подключенного к разъему SysFan на материнской плате. Чаще всего туда подключается кулер от центрального процессора;
  • CPU0 Fan, CPU1 Fan – скорость вращения кулеров, воткнутых в разъемы CPU_Fan и CPU1_Fan на материнской плате, соответственно;
  • Aux1 Fan, Aux0 Fan – скорость вращения кулеров, подключенных к разъемам AUX0_Fan и AUX1_Fan;
  • PWR Fan – скорость вращения кулера блока питания или скорость вращения кулера, который подключен к разъему PWR_Fan на материнской плате;
  • Fan1 – Fan3 – различные кулеры, например, корпусные, подключенные в соответствующие разъемы материнской платы.

kak regulirovat skorost kulerov

Стоит отметить, что все указанные выше обозначения являются условными, и они могут варьироваться. Не каждая материнская плата отдает информацию о том, какое наименование имеется у того или иного разъема для подключения кулера на ней. Например, на некоторых материнских платах в SpeedFan можно увидеть картину как на изображении ниже, то есть все кулеры будут подключены к разъемам Fan1 – Fan5, без точного определения предназначения каждого из них.

kak regulirovat skorost kulerov

Также важно отметить, что программа SpeedFan позволяет управлять только кулерами, которые подключены к материнской плате. Дело в том, что 3-pin разъем от вентилятора можно запитать от материнской платы или от блока питания напрямую. Если он запитан от блока питания, то регулировать его скорость вращения не получится. Рекомендуется подключать все кулеры к материнской плате.

Справа от обозначений скорости вращения кулеров расположен блок с информацией о температуре компонентов компьютера. Стоит отметить, что SpeedFan является не самым точным диагностическим инструментом в данном плане, и определяет температуру он не всегда точно. Если возникают сомнения по одному или нескольким показателям, рекомендуется загрузить более профессиональное в плане мониторинга температуры ПО, например, AIDA64 или HWMonitor.

kak regulirovat skorost kulerov

Настройка скорости вращения кулеров

Как можно понять, в верхнем окне программы SpeedFan расположены блоки с информационными сведениями о работе кулеров. Ниже находятся сами инструменты регулировки интенсивности вращения вентиляторов в компьютере. Они могут быть обозначены Pwm1 – Pwm3 или, например, Speed01 – Speed06. Разницы особой нет, поскольку определить по таким названиям, за работу какого из кулера отвечает та или иная регулировка невозможно.

kak regulirovat skorost kulerov

Чтобы снизить или увеличить скорость вращения кулера, нужно нажимать соответствующие кнопки вверх и вниз в графах с интенсивностью вращения вентиляторов. При нажатии следует наблюдать за реакцией кулеров в диагностической информации выше. Таким образом удастся определить, за какой из вентилятор отвечает та или иная настройка.

Важно: Снижая скорость вращения вентиляторов для уменьшения уровня шума при работе компьютера, не забывайте контролировать температуру компонентов системного блока, чтобы избежать перегрева.

Как следует выбирать вентилятор для корпуса и какие достойны вашего внимания

Как следует выбирать вентилятор для корпуса и какие достойны вашего внимания

Никто из нас не хочет, чтобы ПК вышел из строя из-за перегрева. Именно для того, чтобы подобное не произошло, существуют системы охлаждения. Если вы ищете достойный вентилятор для корпуса, либо же своеобразную «затычку», данный материал вам, несомненно, пригодится.

Все мы с вами прекрасно понимаем, что компьютеры являются крайне сложными в техническом плане устройствами, в которых попросту нет никаких лишних деталей и компонентов. И если же говорить про корпусный вентилятор, то он и вовсе имеет особое значение для любой сборки. Безусловно, сам вентилятор по факту не способен никак повлиять на мощность и производительность вашей системы, но именно благодаря ему ваши компоненты (графический и центральный процессоры вместе с ОЗУ) могут служить большее время.

Без достойного охлаждения ни один ПК не сможет прожить достаточно долгий срок, ведь чем выше температура в вашем ПК, тем более высокий шанс того, что тот или иной компонент может внезапно выйти из строя. Именно этот факт и делает покупку корпусных вентиляторов буквально жизненной необходимостью.

На что нужно обращать внимание при выборе корпусного вентилятора

Как следует выбирать вентилятор для корпуса и какие достойны вашего внимания

Казалось бы, нет ничего проще, нежели купить вентилятор для корпуса, ведь, по сути, это обычный вентилятор. Однако на деле всё обстоит куда сложнее и интереснее, так как и при выборе достойного «вентилятора» вы должны ориентироваться на некоторые основные критерии.

    Размер корпусного вентилятора. Вы должны выбирать «вертушку» исходя из размера вашего корпуса, а точнее, судя по тому, какое место для него предназначено. Обычно стандартный размер (он же является диаметром вентилятора) для ПК равен 120 мм, что является всем привычной нормой. Однако существуют и более крупные и мелкие варианты. Так что дабы не купить вентилятор, который вам не подходит идеально в плане размера, лучше заранее ознакомьтесь с тем, какой именно будет соответствовать вашему корпусу.

4-pin в этом плане ещё лучше, ведь такие корпусные вентиляторы способны сами выстраивать нужную скорость работы, которая будет наиболее оптимальна для системы в конкретный момент. Благодаря такому типу подключения ваша вертушка будет работать максимально тихо, если вы не используете ПК для решения каких-либо сложных задач, что очень здорово.

Вертушка-затычка: DEEPCOOL XFAN 120

Как следует выбирать вентилятор для корпуса и какие достойны вашего внимания

Теперь, когда мы разобрались с теорией, настало время поговорить напрямую о корпусных вентиляторах, достойных вашего внимания и денег. И по традиции давайте начнём с самого доступного варианта — DEEPCOOL XFAN 120. Данная модель, несмотря на свою цену, обладает гидродинамическим подшипником, который всё же «не совсем умело используется» в случае с данным кулером, так как всё равно при максимальной скорости вращения 1 300 об/мин вышеуказанная модель может достигать довольно неприличного для своих цифр уровня шума в 24 дБ.

Диаметр данного вентилятора вполне стандартный для большинства корпусов — 120 мм. Радует то, что есть возможность подключения через 3-pin, благодаря чему хоть и незначительно, но всё же можно отрегулировать скорость. Ну и в конце-концов, если говорить про воздушный поток, то данный показатель составляет 43.56 cfm, что очень даже неплохой показатель для вентилятора со скоростью вращения в 1300 об/мин. Его цена составляет в среднем 270 рублей, и за эти деньги DEEPCOOL XFAN 120 является очень хорошим вариантом для охлаждения средних систем, либо же и вовсе вертушкой-затычкой.

Затычка, но с подсветкой: DEEPCOOL WIND BLADE 120

Как следует выбирать вентилятор для корпуса и какие достойны вашего внимания

Если вы ищете вентилятор для своего корпуса, который будет в плане охлаждения показывать себя на куда более достойном уровне, нежели предыдущая модель, но при этом чей шум будет точно так же довольно низким, то обратите внимание на DEEPCOOL WIND BLADE 120. Его размер, как следует из названия, составляет 120 мм, а максимальное количество оборотов равно такому же значению, что и у предыдущего варианта — 1 300 оборотов в минуту. При этом предельный уровень шума выше всего на 2 Дб и составляет 26 дБ, что очень хорошо. Ну и, конечно, подключение осуществляется за счёт 3-pin через материнскую плату.

«Но чем же тогда данный корпусный вентилятор лучше, нежели упомянутый выше XFAN 120, ведь судя по описанию он примерно такой же?» — спросите вы. Ответ будет простым — разница в существенно возросшем объёме «поглощаемого» воздушного потока, который в данном случае ранен 65.16 cfm. Именно благодаря этому вам стоит немного переплатить и получить вариант, который, во-первых, лучше выглядит, во-вторых, куда лучше охлаждает, и в-третьих, имеет низкий уровень шума. Средняя цена DEEPCOOL WIND BLADE 120, кстати, составляет 360 рублей, в которую входит и встроенная в сам вентилятор подсветка, которая, по правде говоря, понравится далеко не всем.

Доступный «умный» вентилятор: AEROCOOL Frost 12 PWM

Как следует выбирать вентилятор для корпуса и какие достойны вашего внимания

Конечно, далеко не всем нравится, когда вертушки постоянно работают на приблизительно одинаковых скоростях, ведь из-за этого изнашиваются подшипники и повышается уровень шума. Специально для людей, которые не хотят много тратиться, но при этом желают более «умный» вентилятор для охлаждения своего ПК, стоит посоветовать AEROCOOL Frost 12 PWM. Хоть диаметр данного вентилятора составляет 120 мм, отличительной особенностью этого варианта является «динамическая» скорость работы. В зависимости от температуры, данный вентилятор способен самостоятельно выбирать наиболее оптимальную скорость работы от 500 до 1 500 об/мин.

Этот факт очень радует, ведь если вы, например, будете пользоваться лишь условным браузером, то практически не будете слышать никакого шума, в то время как при работе с тяжёлыми программами или играми вентилятор будет работать на полную мощность. Ну и, естественно, то, что в зависимости от интенсивности работы вентилятора, он будет по-разному шуметь — от 18 до 28 дБ (и да, помните что на практике данные цифры всегда немного меньше). Огорчить вас в этой модели может разве что объём воздушного потока, который в зависимости от ситуации может составлять либо 17.3, либо 28.2 cfm.

Конечно, это не очень хорошо, но данный недостаток довольно хорошо компенсирует переменная скорость работы с максимальным значением в 1 500 об/мин., благодаря чему в любом случае охлаждение будет очень хорошим. Подключается AEROCOOL Frost 12 PWM, кстати, при помощи разъёма 4-pin, что не является откровением. Приятным моментом для вас может стать наличие многоцветной (не RGB) подсветки, которая выглядит неплохо. Так что если вы ищете, красивый и тихий вентилятор, который будет самостоятельно адаптироваться к температуре вашей системы и эффективно её охлаждать, то Frost 12 PWM по средней цене в 460 рублей, возможно, станет для вас максимально правильным приобретением.

Справится как с браузером, так и с играми: DEEPCOOL GS120

Как следует выбирать вентилятор для корпуса и какие достойны вашего внимания

Если вы хотите заполучить корпусный вентилятор, который будет обладать всеми преимуществами подключения через 4-pin, то рассмотрите к покупке DEEPCOOL GS120. Размер данного варианта такой же, как и у всех — 120 мм. Установленный подшипник скольжения позволяет обеспечивать низкий уровень шума, что очень важно для многих. И да, уровень шума будет варьироваться от 18 до 32 дБ в зависимости от скорости вращения вентилятора.

Равна же скорость может быть как 900, так и 1 800 об/мин, что крайне позитивно сказывается на общем качестве охлаждения в любых ситуациях. Помимо этого, плюсом можно считать и «потребляемый» воздушный поток, чей показатель с учётом всего остального действительно впечатляет — 61.93 cfm. Ну и последнее, это цена.

Она довольно непостоянна и колеблется в среднем от 550 до 800 рублей. Да, для корпусного вентилятора это многовато, но учитывайте, что он сполна отработает свои деньги, так как действительно великолепно охлаждает, чему способствует как скорость вращения, так и большой объём воздушного потока. Но не стоит рассчитывать на тихую работу — вертушка хоть и не громкая, но и тихой её не назвать.

Безупречен во всём: TITAN TFD-12025H12ZP/KE(RB)

Как следует выбирать вентилятор для корпуса и какие достойны вашего внимания

Все перечисленные выше вентиляторы для корпусов хоть и являлись довольно хорошими, но всё же в случае с каждым из них приходилось идти на определённые компромиссы. И если вы хотите приобрести чуть ли не идеальный вариант, то однозначно вы навряд ли сможете найти что-то лучше, чем TITAN TFD-12025H12ZP/KE(RB). Его диаметр равен 120 мм, подключается к материнской плате через 4-pin, а крутиться вентилятору позволяет качественный подшипник скольжения. Да, во всём этом нет ничего необычного, но удивить здесь призваны все прочие характеристики.

Скорость вращения динамическая — от 210 до 2 100 оборотов в минуту, благодаря чему данная модель способна тихо работать в условиях с минимальной нагрузкой, а также крайне быстро в тех случаях, когда ваши комплектующие действительно нагреваются. Уровень шума в целом соответствует скорости вращения — от 5 до 37 дБ. Да, при 2 100 оборотах в минуту вентилятор будет шуметь довольно сильно, но и охлаждение при этом будет первоклассным.

Ну и в завершение — максимальный объём «поглощаемого» воздушного потока равен 63.59 cfm. Так что в том случае, если вас сильно беспокоят перегревы, то TITAN TFD-12025H12ZP/KE(RB) сумеет вас спасти. Однако да, стоит данное «спасение» не так уже и дёшево — в среднем 1 150 рублей.

голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector