Setting96.ru

Строительный журнал
4 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

2 Схемы

Модуль понижающего преобразователя напряжения DC-DC

На китайских торговых площадках появится интересный модуль понижающего преобразователя напряжения XL4016. Схема позволяет работать с регулированием напряжения (CV) и тока (CC). После добавления в систему источника питания (например, ненужного блока питания ноутбука, трансформатора с выпрямителем и конденсатором) модуль можно использовать в качестве регулируемого БП, зарядки для авто АКБ 12 В или стабилизатора с фиксированным выходным напряжением.

Схема позволяет установить максимальный выходной ток или работать как источник тока (CC). Работа в режиме CC может использоваться, например, для питания светодиодов, зарядки аккумулятора (в том числе автомобильного) или питания модуля Пельтье. Многооборотные потенциометры, установленные на плате, можно заменить на более крупные и удобные, оснащенные ручкой. Импульсная система имеет высокую эффективность, но при более высоких мощностях потребуется принудительная циркуляция воздуха или больший радиатор.

Схема подключения модуля DC-DC

Модуль инвертора можно найти на Алиэкспрессе, его описание часто содержит параметры 9 A 300 Вт, 1,2 — 35 В. Давайте подробнее рассмотрим возможности схемы этого преобразователя и проведём тесты. На радиаторах установлены двойной диод 10A STPS2045 и цепь понижающего инвертора XL4016. Обозначение входов и выходов питания и распределение потенциометров можно найти на рисунке ниже:

Модуль понижающего преобразователя напряжения DC-DC

Полупроводники изолированы от радиаторов, что снижает риск коротких замыканий, но также может снизить эффективность рассеивания тепла. Согласно найденному даташиту, XL4016 в корпусе TO220 имеет предел по току 8 А, возможно, в модуле был использован элемент с большей заявленной эффективностью. Двухцветный светодиод меняет свой цвет с синего на красный при выходном токе >0,8 А. После замыкания выхода с помощью амперметра удалось отрегулировать выходной ток в режиме от CC до 9 A. Работа светодиодов очень удобна и информативна. Потребляемый ток без нагрузки около 15 мА.

Модуль понижающего преобразователя напряжения DC-DC

Электролитические конденсаторы находятся достаточно близко к радиаторам и температура может уменьшить их срок службы, в то время как большая индуктивность просто висит в воздухе, так что ее стоит закрепить клеем, чтобы не повредить печатную плату во время механических воздействий. С другой стороны платы припаян стабилизатор 5В, LM358 и резистор, используемый при измерении выходного тока.

Испытания и тесты модуля XL4016

Стабильность выходного напряжения по сравнению с выходными токами является удовлетворительной, далее пример графика выходного напряжения, установленного на 3.3V в зависимости от тока нагрузки.

Модуль понижающего преобразователя напряжения DC-DC

Влияние входного напряжения при установке выходного крайне мало.

Модуль понижающего преобразователя напряжения DC-DC

Зависимость эффективности КПД преобразователя от изменения выходного тока для двух выходных напряжений.

Модуль понижающего преобразователя напряжения DC-DC

Зависимость КПД от изменения входного напряжения.

Модуль понижающего преобразователя напряжения DC-DC

Пульсации и отклонения выходного напряжения при разных условиях эксплуатации показаны на осциллограммах далее.

Модуль понижающего преобразователя напряжения DC-DC

Модуль понижающего преобразователя напряжения DC-DC

Применение понижающего преобразователя

Использован был этот модуль в качестве зарядного устройства для игрового ноутбука, он отлично работает и не нагревается критично. Вход: 29 В, выход 19 В, Imax 4 А в соответствии с параметрами исходного адаптера переменного тока 220 В.

Модуль понижающего преобразователя напряжения DC-DC

Самый большой ток снимался с модуля работающего как блок питания для радиотелефона, на котором получалось 28 В и 9 A, что очень хорошо.

В качестве зарядного устройства он работает после добавления большого радиатора к XL или замены его на радиатор большего размера, чем заводской, плюс вентилятор, который также охлаждает конденсаторы.

Безопасный диапазон тока при длительной нагрузке составляет около 7 А, при напряжении выше 32 В стабилизатор очень горячий. Перед преобразователем хорошо будет поставить большой ёмкий конденсатор по питанию.

Dc-Dc 300 Вт. понижающий 5-40В в 1,2-35В.

Dc-Dc 300 Вт — понижающий преобразователь с регулировкой тока и напряжения построен на микросхеме XL4016.

http://alielectronics.net/wp-content/uploads/2016/04/Bezimeni-2-4-300x300.jpg

Микросхема работает на частоте 180 khz и построена на полевом транзисторе, за счет чего обеспечивается высокий КПД преобразователя напряжения — около 95%.

DC/DC преобразователь может использоваться как зарядное устройство (для зарядки всех типов аккумуляторов AA, AAA, Li-Ion, Li-Pol), драйвер для светодиодов и блок питания с регулировкой выходного напряжения и тока. В нем имеется встроенная защита от короткого замыкания, от перегрева.

Заменив подстроечные резисторы регулировки тока и напряжения на переменные и добавив вольтметр с амперметром , можно cделать качественный, а главное — недорогой лабораторный блок питания своими руками.

Понижающий импульсный регулируемый преобразователь можно использовать в качестве контроллера к солнечным батареям, а также для зарядки любых АКБ.

  • Материал: Печатная плата и электронных компонентов
  • Цвет: как показывает рис
  • Входное напряжение: 5-40 В
  • Выходное напряжение: 1.2-35 В (плавно регулируемое)
  • Выходной ток: 9A (температура превышает 65 °C пожалуйста добавить вентилятор охлаждения)
  • Постоянный ток : 0.2-9а (регулируемый)
  • Выходная мощность: Максимальная мощность около 300 Вт (температура превышает 65 °C пожалуйста добавить вентилятор охлаждения)
  • Размер: прибл. 2.55*1.88*0.94 дюймов/6.5*4.8*2.4 см (длина * ширина * толщина)
  • Входное напряжение: 5-35В
  • Выход: регулируемый 1.25-30В при токе до 3А (при выходной мощности более 15Вт потребуется организовывать теплоотвод от преобразователя, в состоянии as is его роль исполняет кусок фольги с обратной стороны платы)
  • Габариты (дшв): 48х24х13мм

http://alielectronics.net/wp-content/uploads/2016/04/Bezimeni-1-15-300x167.jpg

Итак, чтобы использовать его как зарядное устройство необходимо:

  1. подать на вход питание заведомо выше напряжения полностью заряженного аккумулятора хотя бы на 2В
  2. левым потенциометром выставить требуемое напряжение заряда (допустим 4.35в, на 4.2 и так полно зарядок)
  3. замкнуть выход преобразователя амперметром и правым потенциометром выставить максимальный ток заряда.
  4. подключить аккумулятор и ждать пока погаснут все индикаторные диоды (красные) кроме нижнего (зеленый)

По поводу диодов

преобразователь не боится короткого замыкания на выходе, но не защищен от переполюсовки

для использования в качестве драйвера светодиода выставляем напряжение холостого хода выше чем падение на диоде (диодах) на рабочем токе (в принципе можно хоть до упора выкрутить регулятор в сторону максимума), далее как в п.3 выставляем требуемый ток через диод.
подключаем светодиод — должен гореть он сам и все 3 индикатора (если верхний не горит, значит недостаточно напряжения на входе)
конечно же, это драйвер не для фонариков, а вот для всяческой мелкомотоколесной техники или стационарного освещения — вполне

Настройка частотных преобразователей данфосс

В данной статье рассмотрим режим поддержания постоянного давления. Задание от внешнего потенциометра, старт от кнопки.

Для ввода преобразователя частоты в эксплуатацию необходимо выполнить следующие действия:

  1. Выполнить монтаж с соблюдением норм безопасности!
  2. Проверить параметры оборудования (параметры сети, входа питание ПЧ, двигателя)
  3. Проверить условия установки и эксплуатации преобразователя частоты (отсутствие пыли и влаги, температурный режим и установочные зазоры).
  4. Электрический монтаж осуществить в соответствии с схемой подключения указанной на рисунке 1

Рисунок 1. Принципиальная электрическая схема подключения преобразователя частоты VLT Micro Drive

[0] нормальный (скорость больше при + ошибке) (давление)

[1 ] инверсный (скорость меньше при + ошибке) (температура)

*Обязательно введите/проверьте значения этих параметров

Настройка коэффициентов ПИ регулятора

1. Установите 7-34 = 9999, 7-33 = 0,3 Плавно

увеличивайте знач. 7-33 до появления автоколеб.

2. Снизьте знач. 7-33 на 40% и зафиксируйте

3. При найденном значении 7-33 установите 7-34 = 20 и снижайте до появления колебаний или очень большого перерегулирования

4. Увеличьте знач. 7-34 на 25% и зафиксируйте

При возникновении сложностей в программировании преобразователя частоты VLT Micro Drive — обратитесь к специалистам Европейской Электротехнической Компании для получения консультации.

Друзья! Для вас мы сделали подборку ответов на наиболее часто задаваемые вопросы по настройке, ошибкам пч, аварийным ситуациям:

1. Преобразователь частоты Danfoss VLT Micro Drive FC-051 выдаёт ошибку (предупреждение) W7

Ответ: Данное предупреждение сигнализирует о превышении U-я в звене постоянного тока преобразователя частоты Danfoss, возникает когда время торможения инерционной нагрузки слишком быстрое.

Решение: Увеличиваем постепенно время торможения в параметре 3-42, до тех пор, пока не пропадёт предупреждение.

2. Авария AL16 на частотном преобразователя

Ответ: Данная авария сигнализирует о коротком замыкании моторного кабеля

Читать еще:  Регулировка пластиковых окон ортекс

Решение: Т. к. эта авария возникает с блокировкой привода, она требует снятия напряжения с преобразователя частоты, и дальнейшей проверки кабеля

3. Предупреждение W12

Ответ: Выходной ток выше уставки

Решение: В параметре 1-01 (принцип управления преобразователем частоты), следует выставить 0 (вольт-частотный режим)

4. Как вращать двигатель вперед, назад(реверс) разными кнопками

Ответ: Следует подключить пч и собрать схему следующим образом:

В преобразователь частоты вбить следующие параметры:

№ пар.

Параметр

Требуется установить значение

Режим работы (сброс параметров на заводские)

[2] Initialisation — инициализация (выкл. затем включить ПЧ) значение сброситься в 0, на ПЧ появится сигнал Alarm 80

## кВт — с таблички двигателя

## В — с таблички двигателя

## Гц — с таблички двигателя

## А — с таблички двигателя

## Об/мин — с таблички двигателя

Мин. скорость вращения

[0] Гц — в зависимости от применения

Макс. скорость вращения

[50] Гц — рекомендуется установить номинальную скорость

3-02*Мин. задание[0] минимальное задание

[50] максимальное задание

[8] с — зависит от применения.

[8] с — зависит от применения

Источник задания 1

[21] LCP21 — задание потенциометром панели оператора

Функция цифр. вх. 18

[9] Start — Импульсный пуск

Функция цифр. вх. 19

[10] — Реверс

5. В каком параметре поменять верхний диапазон вращения частоты двигателя

Ответ: Параметр 4-14 Верхний предел вращения двигателя, [Гц]

6. Как дистанционно управлять частотным приводом VLT Micro Drive

Ответ: Существует специальная облачная технология Cloud-Control Danfoss, позволяющая отслеживать состояние электропривода и возникающие аварии

Решение: Видео ролик с реализацией данной технологии:

7.» Настройка связи с частотным приводом по Modbus

Ответ: В видео ролик идет пример оcуществления связи пч и панели оператора Weintek по RS-485 (ссылка на статью под видео)

8. Как управлять частотником от внешнего потенциометра?

Ответ: Подключить пч согласно данной схемы:

№ пар.ПараметрТребуется установить значение14-22Режим работы (сброс параметров на заводские)[2] Initialisation — инициализация, после установки значения выключить и затем включить ПЧ (сбросится в 0)1-20*Номинальная мощность## кВт — паспортной таблички двигателя1-22*Номинальное напряжение## В — паспортной таблички двигателя1-23*Номинальная частота## Гц — паспортной таблички двигателя1-24*Номинальный ток## А — паспортной таблички двигателя1-25*Номинальный скорость## Об/мин — паспортной таблички двигателя1-29Автоматическая адаптация двигателя[2] Enable AMT — Для запуска адаптации установите [2] на пульте «Hand on» по завершении — «Ok» Знач. сбросится [0]4-12*Мин. скорость вращения[0] Гц — в зависимости от применения (реком. для вентиляторов)4-14*Макс. скорость вращения[50] Гц — рекомендуется установить номинальную скорость3-41Время разгона[3] с — зависит от применения3-42Время замедления[3] с — зависит от примененияПроверьте правильность направления вращения механизма, в ручном режиме нажав на панели «Hand on» (далее потенциометром панели или стрелками), по окончании нажмите «Auto on»*3-02Мин. задание[0] мин. рабочий уровень или мин. уровень сигнала с датчика3-03*Макс. задание[10] макс. рабочий уровень или макс. уровень сигнала с датчика3-15Источник задания 1[1] Analog in 53 — задание с потенциометра3-16*Источник задания 2[0] No function — нет5-10Функция цифр. вх. 18[8] Start — Пуск5-12*Функция цифр. вх. 27[3] Coast and reset inverse — выбег и сброс инверсный

Кл. 53 низкое напряжение[0] В — нижний диапазон аналогового входа 1

6-11Кл. 53 высокое напряжение[10] В — высокий диапазон аналогового входа 16-14Кл. 53 низкое задание[0] — низкое задание аналогового входа 16-15*Кл. 53 высокое задание[50] — высокое задание аналогового входа 1

9. Ошибка AL8

Ответ: Низкий уровень напряжения цепи постоянного тока выпрямителя, может возникать когда напряжение на звене пост. тока падает ниже установленного порога, в следствии пропадании одной из фаз.

Решение: Проверить подключение фаз

    2 commentsПринцип работы Январь 8, 2017

Как настроить PID регулятор для преобразователей частоты Danfoss

Этот регулятор пользователь применяет для удержания частотником определенного параметра. Подключим механизм установки вентилятора.

Задающим сигналом работает потенциометр.

Обратную связь осуществит датчик давления.

Соблюдение полярности – важное условие при подсоединении пользователем датчика. Основную настройку регулятора сделаем программой МСТ-10, которая обеспечивает контролирование данных на графике. К частотнику присоединяемся через USB. Вводим данные нормы для мотора по паспорту в группу данных 1-2 и 1-22, 1-23 – частота, 1-24 – ток мотора, 1-25, скорость мотора.

Проводим параметры входов преобразователя частоты в группе 6. В группе 6-1 задаем данные для задающего сигнала. В группе 6-2 определяем значения датчика. Настраиваем частотник для работы регулировки процесса в контуре. Эти значения сочетаются не со всеми применениями. Они задаются пользователем конкретно во всех случаях.

Настраивание регулятора преобразователей частоты Danfoss происходит по определению пропорционального коэффициента и составляющих интегральных регулятора. Автоматические колебания различаются, заметны на осциллографе и постоянны по характеру. Если будет оставаться ошибка регулировки, то уменьшаем составляющую. Значение 20-94 уменьшим до уменьшения разницы и исчезновения колебаний. При сравнивании значения с заданием, настройка закончена.

Частотник danfoss vlt micro fc 51. Проблемы с установками частоты.

У меня возникла следующая проблема. Купили вытяжную приточную установку вместе со щитом управления. К щиту управления подключаются преобразователи частоты VLT Micro Drive – Danfoss, на вытяжную вентиляцию и на приток.

Не знаю как разобраться в описании: как настраивать преобразователь частоты, чтобы он мог выключаться командой с управляющего пульта. Частотный преобразователь работает один. Подключили к нему сеть питания – он работает. Отключать его можно, выключив автоматический выключатель или нажав кнопку на корпусе прибора. Это очень неудобно.

Я изучал инструкцию, очень большую, ответа так и не нашел на мой вопрос. Нашел лишь то, что написано: «сигнал управления подается на контакт №18. Взял и подключил на этот контакт сигнал управления, но ничего не изменилось.

Оказалось, что надо искать причину от того, что на частотный преобразователь не подключены контакты термореле от моторов вентиляторов. Это контролирование тока. Учитывая эту информацию, настроили частотный преобразователь VLT® Micro Drive – Danfoss во 2-й раз. Есть электрическая схема, но в ней ничего не понятно.

Настройка преобразователя частоты своими руками

Чтобы электродвигатели работали правильным образом и с достаточной безопасностью, необходимо использовать частотные преобразователи. Современные частотные преобразователи имеют базу с электроникой, которая дает возможность на терминале задавать пользователю все параметры для работы. К ним относятся:

  • время периода разгона;
  • коммутационная частота;
  • частота питания электродвигателя;
  • установка логического входа.

Эти параметры определяются набором кода из символов. Некоторые настройки можно устанавливать на работающем двигателе и на остановленном. Изменять свойства можно по сети коммуникации или по компьютеру. Терминал расположен на лицевой панели частотника. Устанавливать настройки, управлять и анализировать параметры можно во время работы механизма.

Как настроить преобразователь частоты Danfoss?

Преобразователи Danfoss программируются с помощью меню графического дисплея. Перечень режимов выполняется кнопкой «Меню». По меню передвигаются с помощью стрелок и кнопки «ОК». Режим управляемости показывает индикатор.

Каждая задача программируется вручную. Для занесения значений пользуются таблицей. Перед программированием заносят данные паспорта двигателя. Для сохранения настроек и адаптации в автоматическом режиме пользуются кнопкой «Off». Можно выполнять настройки применяя компьютер или ноутбук. С помощью специальной программы изменяются данные, ведется наблюдение на осциллографе. Ноутбук обязательно должен работать автономно от своей батареи, располагаться на диэлектрической поверхности.

Настройка частотника Danfoss для эксплуатации вентилятора проводится для того, чтобы поддерживать на выходе определенного потока воздушного давления. Управляющая панель, кнопки и экран обеспечивают удобство проведения регулировки.

Читать еще:  Регулировка петель деревянных окон

Механизмы подъема. Преобразователь частоты серии EI-9011 в частотно регулируемом приводе

Механизмы подъема груза с применением электропривода устанавливаются на всех грузоподъемных машинах. Их общая конструкция характерна не только для кранов и лифтов, но и для машин специального назначения, в которых направление вектора приложения силы от действия нагрузки может совпадать с направлением вращения ротора электродвигателя.

Самый простой вариант механизма — грузовая лебедка. Это машина для подъема грузов с помощью каната, навиваемого на барабан с зацепом в виде крюка.

1.jpg

Основная кинематическая схема механизма подъема

Электропривод механизма подъема

Самый распространенный электродвигатель для механизма подъема — это асинхронный электродвигатель с короткозамкнутым ротором. При простоте управления (прямой пуск) у него есть существенные недостатки:

  • большие пусковые токи,
  • большие динамические нагрузки при запуске.

Устранить их в какой-то мере позволяет применение электродвигателя с фазным ротором. Но появляется новый недостаток — громоздкое силовое коммутационное оборудование.

Наиболее высоких эксплуатационных показателей позволяет достичь применение частотно-регулируемого привода, а именно:

  • снизить пусковые токи до уровня номинального,
  • снизить динамические нагрузки до уровня расчетных,
  • плавно регулировать скорости вращения в широком диапазоне.

Применение ПЧ серии EI-9011 для управления механизмом подъема

При выборе преобразователя частоты «Веспер» прежде всего надо учитывать тип редуктора механизма подъема. Различают 2 основных типа:

  • цилиндрический,
  • червячный.

Различие этих редукторов в том, что цилиндрический — двухсторонний, т. е. крутящий момент передается как от входного вала к выходному, так и наоборот — от выходного вала к входному; а червячный — односторонний. Последний устанавливают реже — из-за низкого КПД и повышенного износа.

В механизмах подъема с червячным редуктором возможно применение любого преобразователя частоты «Веспер» серий EI, E3, E4, E5. Но применение ЧРП в таком механизме мы рассматривать не будем — из-за отсутствия особенностей его работы.

Для механизмов подъема с цилиндрическими редукторами рекомендуется применять преобразователи частоты серии EI-9011, благодаря наличию у них:

  1. Мощного центрального процессора, который позволяет создать программное обеспечение для векторного режима с высокими точностными характеристиками и широким функционалом.
  2. Двух векторных режимов: в разомкнутой системе и с датчиком обратной связи по скорости.
  3. Широкого диапазона регулировки скорости: 1/100 в обычном векторном режиме и 1/1000 — в векторном с обратной связью.
  4. Векторного режима с обратной связью, который обеспечивает М=100% практически при нулевой скорости вращения двигателя.

Ранее приведенная кинематическая схема механизма подъема оптимальна для управления от преобразователя частоты EI-9011. В составе механизма есть тормозное устройство (3), конструктивно не связанное ни с электродвигателем, ни с редуктором. Для него доступно независимое управление электрическим сигналом.

С преобразователем частоты структура будет иметь следующий вид:

2.jpg

Рассмотрим простейшую схему управления приводом грузовой лебедки с электродвигателем небольшой мощности — до 8 кВт:

3.jpg

Для такого применения достаточно, как правило, режима работы ПЧ «Векторный в разомкнутой системе».

Почему именно он? Потому что позволяет управлять вращением двигателя в более широком диапазоне скоростей, чем скалярный режим. Это особенно важно на нижней границе диапазона, где требуется обеспечить номинальный момент на валу двигателя при возможной минимальной скорости вращения. Чем меньше значение выходной частоты ПЧ, при которой двигатель начинает вращение и имеет номинальную нагрузку на своем валу, тем меньше динамическая (ударная) нагрузка на все части механизма подъема.

Программирование ПЧ серии EI-9011 для управления механизмом подъема

Для программирования ПЧ необходимо подключить его к сети силового электропитания 3Ф, 380 В, 50 Гц. Соответственно, и электродвигатель, с которым предполагается работа, тоже следует подключить к ПЧ. Программирование производится с собственного пульта управления.

Векторный режим работы предусматривает обязательную автонастройку ПЧ с применяемым электродвигателем. Проводить ее следует при каждой замене двигателя.

Важное примечание: в процессе автонастройки ПЧ определяет ряд параметров двигателя во время вращения последнего. Поэтому для корректного определения параметров вал двигателя должен быть свободным — на нем не должно быть лишней присоединенной массы.

После подачи напряжения питания в основном меню ПО надо выбрать раздел «Инициализация». В этом разделе:

  • Выполнить инициализацию (возврат значений всех параметров к заводским).
  • Выбрать режим работы — «Векторный в разомкнутой системе».
  • Определить уровень доступа к параметрам — «Расширенный».

Выбор других разделом меню и параметров производится аналогично.

Программирование можно выполнить и с помощью пульта управления ПЧ. Вся информация выводится на дисплей пульта в доступном виде и с комментариями на русском языке.

Следующий шаг: в основном меню ПО надо выбрать раздел «Автонастройка». В этом разделе следует выполнить все указания по вводу значений параметров двигателя и запустить процесс автонастройки. Если после его завершения на дисплее пульта управления нет сообщений об ошибках, следует перейти к программированию.

Далее в основном меню ПО надо выбрать раздел «Программирование». Перечень его параметров определяется следующими условиями:

  • Управление работой ПЧ (человек или АСУ).
  • Управление работой механизма со стороны ПЧ.

Для рассматриваемого варианта применения алгоритм работы и управления будет следующим:

При подаче команды движения вверх или вниз ПЧ выдает команду на отключение тормоза (размораживает механизм), а затем начинает вращение двигателя с минимальной частоты. В процессе работы лебедки можно регулировать скорость вращения и, соответственно, линейную скорость перемещения зацепа с грузом, выбирая оптимальную.

Вернемся к электрической схеме внешних подключений к ПЧ.

Клеммы 1 и 2 имеют фиксированные функции пуска в прямом и обратном направлении вращения соответственно.

После подачи питания на ПЧ вид управления — дистанционный: световые индикаторы УПР и РЕГ светятся. За это состояние отвечают параметры b1-02 и b1-01 соответственно, т.е. ПЧ уже настроен на внешние команды «ПУСК» и «УПРАВЛЕНИЕ СКОРОСТЬЮ».

Управление тормозом лебедки будет выполнять многофункциональный дискретный выход: клеммы 9-10. К началу вращения, после подачи команды «ПУСК», контакты внутреннего реле замыкают клеммы 9-10 и обеспечивают подачу сигнала управления тормозной системой лебедки. Такой режим обеспечивает функция дискретного выхода «Во время вращения».

В сочетании с режимом торможения постоянным током при пуске можно создать момент на валу двигателя при минимальной выходной частоте, при котором не будет срыва управления, и динамические нагрузки будут минимальными.

Процесс торможения постоянным током при пуске определяется параметрами:

  • В2-01 — частота включения постоянного тока торможения.
  • В2-02 — уровень тока торможения.
  • В2-03 — время торможения постоянным током при пуске.

При подаче команды «ПУСК» включается торможение двигателя постоянным током, но тормоз еще не отключен. В течение времени торможения происходит предварительное намагничивание двигателя, и к моменту отключения тормоза на его валу уже создан начальный момент. Это поясняют следующие временные диаграммы:

4.jpg

При опускании груза направление вращения вала двигателя совпадает с направлением вектора силы, которая определяется массой груза, и эта сила пытается увеличить скорость вращения вала двигателя. Таким образом, двигатель переходит в генераторный режим работы.

5.jpgЭДС, которая вырабатывается двигателем в таком режиме, поступает в ПЧ, повышая напряжение на звене постоянного тока. Чтобы исключить аварийные остановки привода из-за перегрузки по напряжению, предусмотрен тормозной резистор. Он подключается к звену постоянного тока, когда напряжение ЗПТ достигает критического значения и рассеивает в тепло излишек электроэнергии.

Обобщая вышесказанное, можно составить минимальный список параметров с конкретными значениями для программирования режимов работы и управления ЧРП грузовой лебедки:

  • А1-03=2220,
  • А1-02=2,
  • А1-01=4,
  • В2-01=0,5,
  • В2-02=50.0,
  • В2-03=1.0,
  • Н2-01=37.

Рассмотренный пример ЧРП грузовой лебедки с применением ПЧ «Веспер» серии EI-9011 можно использовать как базовый — для проектирования более сложных механизмов подъема, с улучшенными эксплуатационными характеристиками.

Принцип работы частотного преобразователя для асинхронного двигателя

Трехфазные асинхронные двигатели нашли самое широкое применение в промышленности и других областях. Современное оборудование просто невозможно представить без этих агрегатов. Одной из важнейших составляющих рабочего цикла машин и механизмов является их плавный пуск и такая же плавная остановка после выполнения поставленной задачи. Такой режим обеспечивается путем использования преобразователей частоты. Эти устройства проявили себя наиболее эффективными в больших электродвигателях, обладающих высокой мощностью.

Читать еще:  Окна rehau регулировка окон

С помощью преобразователей частоты успешно выполняется регулировка пусковых токов, с возможностью контроля и ограничения их величины до нужных значений. Для правильного использования данной аппаратуры необходимо знать принцип работы частотного преобразователя для асинхронного двигателя. Его применение позволяет существенно увеличить срок службы оборудования и снизить потери электроэнергии. Электронное управление, кроме мягкого пуска, обеспечивает плавную регулировку работы привода в соответствии с установленным соотношением между частотой и напряжением.

Что такое частотный преобразователь

Основной функцией частотных преобразователей является плавная регулировка скорости вращения асинхронных двигателей. С этой целью на выходе устройства создается трехфазное напряжение с переменной частотой.

Преобразователи частоты нередко называются инверторами. Их основной принцип действия заключается в выпрямлении переменного напряжения промышленной сети. Для этого применяются выпрямительные диоды, объединенные в общий блок. Фильтрация тока осуществляется конденсаторами с высокой емкостью, которые снижают до минимума пульсации поступающего напряжения. В этом и заключается ответ на вопрос для чего нужен частотный преобразователь.

В некоторых случаях в схему может быть включена так называемая цепь слива энергии, состоящая из транзистора и резистора с большой мощностью рассеивания. Данная схема применяется в режиме торможения, чтобы погасить напряжение, генерируемое электродвигателем. Таким образом, предотвращается перезарядка конденсаторов и преждевременный выход их из строя. В результате использования частотников, асинхронные двигатели успешно заменяют электроприводы постоянного тока, имеющие серьезные недостатки. Несмотря на простоту регулировки, они считаются ненадежными и дорогими в эксплуатации. В процессе работы постоянно искрят щетки, а электроэрозия приводит к износу коллектора. Двигатели постоянного тока совершенно не подходят для взрывоопасной и запыленной среды.

Принцип работы частотного преобразователя для асинхронного двигателя

В отличие от них, асинхронные двигатели значительно проще по своему устройству и надежнее, благодаря отсутствию подвижных контактов. Они более компактные и дешевые в эксплуатации. К основному недостатку можно отнести сложную регулировку скорости вращения традиционными способами. Для этого было необходимо изменять питающее напряжение и вводить дополнительные сопротивления в цепь обмоток. Кроме того, применялись и другие способы, которые на практике оказывались неэкономичными и не обеспечивали качественной регулировки скорости. Но, после того как появился преобразователь частоты для асинхронного двигателя, позволяющий плавно регулировать скорость в широком диапазоне, все проблемы разрешились.

Одновременно с частотой изменяется и подводимое напряжение, что позволяет увеличить КПД и коэффициент мощности электродвигателя. Все это позволяет получить высокие энергетические показатели асинхронных двигателей, продлить срок их эксплуатации.

Принцип действия частотного преобразователя

Эффективное и качественное управление асинхронными электродвигателями стало возможно за счет использования совместно с ними частотных преобразователей. Общая конструкция представляет собой частотно-регулируемый привод, который позволил существенно улучшить технические характеристики машин и механизмов.

В качестве управляющего элемента данной системы выступает преобразователь частоты, основной функцией которого является изменение частоты питающего напряжения. Его конструкция выполнена в виде статического электронного узла, а формирование переменного напряжения с заданной изменяемой частотой осуществляется на выходных клеммах. Таким образом, за счет изменения амплитуды напряжения и частоты регулируется скорость вращения электродвигателя.

Управление асинхронными двигателями осуществляется двумя способами:

  • Скалярное управление действует в соответствии с линейным законом, согласно которому амплитуда и частота находятся в пропорциональной зависимости между собой. Изменяющаяся частота приводит к изменениям амплитуды поступающего напряжения, оказывая влияние на уровень крутящего момента, коэффициент полезного действия и коэффициент мощности агрегата. Следует учитывать зависимость выходной частоты и питающего напряжения от момента нагрузки на валу двигателя. Для того чтобы момент нагрузки был всегда равномерным, отношение амплитуды напряжения к выходной частоте должно быть постоянным. Данное равновесие как раз и поддерживается частотным преобразователем.
  • Векторное управление удерживает момент нагрузки в постоянном виде во всем диапазоне частотных регулировок. Повышается точность управления, электропривод более гибко реагирует на изменяющуюся выходную нагрузку. В результате, момент вращения двигателя находится под непосредственным управлением преобразователя. Нужно учитывать, что момент вращения образуется в зависимости от тока статора, а точнее – от создаваемого им магнитного поля. Под векторным управлением фаза статорного тока изменяется. Эта фаза и есть вектор тока осуществляющий непосредственное управление моментом вращения.

Настройка частотного преобразователя для электродвигателя

Для того чтобы преобразователь частоты для асинхронного двигателя в полном объеме выполнял свои функции, его необходимо правильно подключить и настроить. В самом начале подключения в сети перед прибором размещается автоматический выключатель. Его номинал должен совпадать с величиной тока, потребляемого двигателем. Если частотник предполагается эксплуатировать в трехфазной сети, то автомат также должен быть трехфазным, с общим рычагом. В этом случае при коротком замыкании на одной из фаз можно оперативно отключить и другие фазы.

Ток срабатывания должен обладать характеристиками, полностью соответствующими току отдельной фазы электродвигателя. Если частотный преобразователь планируется использовать в однофазной сети, в этом случае рекомендуется воспользоваться одинарным автоматом, номинал которого должен в три раза превышать ток одной фазы. Независимо от количества фаз, при установке частотника, автоматы не должны включаться в разрыв заземляющего или нулевого провода. Рекомендуется использовать только прямое подключение.

При правильной настройке и подключении частотного преобразователя, его фазные провода должны соединяться с соответствующими контактами электродвигателя. Предварительно обмотки в двигателе соединяются по схеме «звезда» или «треугольник», в зависимости от напряжения, выдаваемого преобразователем. Если оно совпадает с меньшим значением, указанным на корпусе двигателя, то применяется соединение треугольником. При более высоком значении используется схема «звезда».

Далее выполняется подключение частотного преобразователя к контроллеру и пульту управления, который входит в комплект поставки. Все соединения осуществляются в соответствии со схемой, приведенной в руководстве по эксплуатации. Рукоятка должна находиться в нейтральном положении, после чего включается автомат. Нормальное включение подтверждается световым индикатором, загорающимся на пульте. Для того чтобы преобразователь заработал, нажимается кнопка RUN, запрограммированная по умолчанию.

После незначительного поворота рукоятки, двигатель начинает постепенно вращаться. Для переключения вращения в обратную сторону, существует специальная кнопка реверса. Затем с помощью рукоятки настраивается нужная частота вращения. На некоторых пультах вместо частоты вращения электродвигателя, отображаются данные о частоте напряжения. Поэтому рекомендуется заранее внимательно изучить интерфейс установленной аппаратуры.

Частотные преобразователи для асинхронных двигателей

Благодаря частотным преобразователям, работа современных асинхронных двигателей отличается высокой эффективностью, устойчивостью и безопасностью. Это особенно важно, поскольку каждый электродвигатель отличается индивидуальными особенностями режима работы. Поэтому оптимизации параметров питания агрегатов с использованием преобразователей частоты придается большое значение. Когда частотный преобразователь выбирается для каких-либо конкретных целей, в этом случае должны обязательно учитываться его рабочие параметры.

Нормальная работа устройства будет зависеть от типа электродвигателя, его мощности, диапазона, скорости и точности регулировок, а также от поддержания стабильного момента вращения вала. Эти показатели имеют первостепенное значение и должны органично сочетаться с габаритами и формой аппарата. Следует обратить особое внимание на то, как расположены элементы управления и будет ли удобно им пользоваться.

Выбирая устройство, необходимо заранее знать, в каких условиях оно будет эксплуатироваться. Если сеть однофазная, то и преобразователь должен быть таким же. То же самое касается и трехфазных аппаратов. Многое зависит от мощности асинхронных двигателей. Если при запуске на валу необходим высокий пусковой момент, то и частотный преобразователь должен быть рассчитан на большее значение тока.

голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector