Setting96.ru

Строительный журнал
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Производительность из воздуха — как правильно расположить кулеры

Производительность из воздуха — как правильно расположить кулеры

Производительность из воздуха — как правильно расположить кулеры

Пыль — один из главных врагов компьютера, и её слои на компонентах — лишь часть загадки. Пыль любит накапливаться на пластинчатых радиаторах, и если эти радиаторы регулярно не прочищать, то компоненты начнут перегреваться. Результат — более низкие частоты как на процессоре, так и на видеокарте. Соответственно, производительность упадёт вместе с ними, а это приведёт к снижению быстродействия.

Например, карты NVIDIA с их автоматическим «оверклоком» NVIDIA Boost очень чувствительны к повышению температуры. Спецы из Gamers Nexus говорят, что карты NVIDIA дают возможность повышать частоту до одного уровня, если температура чипа опускается до 70 градусов, а начиная с 60—63 «бусты» могут подняться ещё выше.

Стабильность частоты карты также важна — чем меньше колебаний, тем меньше fps будет «прыгать», а соответственно, игра будет плавнее. Если средняя температура вашей карты, например, 65 градусов, то постарайтесь её опустить до 62-61 — тогда у Boost будет возможность поднять частоту повыше.

Производительность из воздуха — как правильно расположить кулеры

Важность типа видеокарты и расположения блока питания

Дополнительный фактор, способный повлиять на температуры комплектующих, — дизайн кулеров самих компонентов, например видеокарт. Так, карты могут быть охлаждены самым простым вентилятором с направленным движением выдува — такие типы кулеров хорошо подходят в маленькие корпусы, так как большое количество тепла выводится сразу через задний выхлоп карты. Этот тип охлаждения часто дешевле, но работает громче, и средняя температура чипа в случае с ними превышает 80 градусов.

Карта с ненаправленным выхлопом же выдувает горячий воздух прямо в корпус, поэтому сам графический чип хоть и будет прохладнее, но компоненты материнской платы начнут перегреваться. В данном случае циркуляция воздуха в системнике крайне важна — горячий воздух нужно срочно выводить. Водяное охлаждение, конечно, самое удобное — горячий воздух сразу выдувается вентилятором наружу, но такие карты часто стоят намного дороже.

Производительность из воздуха — как правильно расположить кулеры

Как избежать накопления пыли?

Как же удостовериться в том, что этой самой пыли в корпусе копится по минимуму? Первым делом надо пылесосить дома. Пылесос сам по себе очень полезная вещь, которую мы часто используем слишком мало. И не держите компьютер на полу — там пыли, песку, волосам и всему остальному проще всего проникнуть внутрь. Кроме того, проверьте, сколько вентиляторов в корпусе, как они расположены, куда дуют и стоят ли перед ними пылевые фильтры. В случае с более дорогими корпусами самые важные места (передняя панель и под блоком питания) уже покрыты съёмными фильтрами, которые обязательно нужно чистить каждые пару месяцев, особенно если у вас дома есть питомцы или просто много пыли. Если у корпуса нет пылевых фильтров, то их достаточно легко сделать самостоятельно — надо достать сетку и магнитные наклейки, после чего просто вырезать по размеру.

Раньше к движению воздуха не относились серьёзно — хорошо, когда сзади был один выхлопной 80-миллиметровый вентилятор. Сегодня популярностью пользуются два главных типа регуляции циркуляции воздуха в корпусе — отрицательное и положительное давление.

Кулер (система охлаждения)

Ку́лер — в применении к компьютерной тематике — русское название сборки вентилятора с радиатором, устанавливаемой для воздушного охлаждения электронные компонентов компьютера с повышенным тепловыделением (обычно более 5 Вт): центральный процессор, графический процессор, микросхемы чипсета. В английском языке эти принадлежности компьютерной техники, ни по отдельности, ни в сборке никогда словом англ.  cooler (охладитель, холодильник) не называются. «Радиатор» пассивного поглотителя именуется в документации Heat sink. Вентиляторы же, необходимость которых для усиления теплоотвода от радиаторов возникла позже, так и называются англ.  fan («вентилятор»), либо heat spreader (устройство теплоотвода).

Содержание

Этимология названия [ править | править код ]

Несмотря на то, что слово для названия устройства заимствовано из английского языка (cool — охлаждать), в русском языке оно имеет более узкое значение. В английском языке сборка радиатора и вентилятора для компьютера общего названия не имеет, а именуется по составным частям: радиатор — heat sink (иногда слитно — heatsink) и отдельно fan — вентилятор. В то же время, за словом „cooler“ в английском исторически закрепился целый ряд устройств для охлаждения (часто бытовых), начиная с переносных термосов-холодильников и вплоть до аппаратов для охлаждения питьевой воды. Наибольшая частота употребления слова в русском языке приходится на устройство, являющее собой сборку вентилятора и радиатора, устанавливаемую на процессоры/контроллеры и видеоадаптеры персональных компьютеров с целью отвода выделяемого тепла.

Вентиляторный охладитель непосредственного обдува [ править | править код ]

Кулер применяется при необходимости обеспечения бо́льшего протока воздуха в контрольных точках (при не очень большой мощности чипа или при ограниченной вычислительной ёмкости задач, достаточно бывает только радиатора, без вентилятора).

Конструктивно используется следующая схема:

Тепловые модели алюминиевых радиаторов

  • на тепловыделяющий компонент устанавливается теплоотводящий радиатор из материала с высокой теплопроводностью (доступнее всего — алюминий и медь).
  • на стык между тепловыделяющей и теплоотводящей поверхностями радиатора наносится слой термоинтерфейса (например, в виде термопасты) для уменьшения потерь теплопроводности на стыке, обусловленных возможными неровностями на этих поверхностях.
  • на радиатор прикрепляется вентилятор, нагнетающий воздух к радиатору. По мере развития, кроме проводов питания, в шлейф вентилятора был добавлен провод подключающий встроенный в конструкцию вентилятора тахометр, что позволило ввести обратную связь и при помощи изменения напряжения регулировать скорость вращения вентиляторов (как правило, на материнской плате эта функция реализована в контроллере Super I/O).

Для увеличения полезной площади радиатора (с сопутствующим повышением теплоотдачи) производители в широких пределах варьируют материалом (или собирают конструкцию из медной «пятки» и окружающих её алюминиевых рёбер) и геометрическими формами вследствие чего радиатор порой принимает весьма причудливые формы. Часто это также обуславливается стремлением производителя внешним видом своего продукта привлечь внимание потребителей, неравнодушных к причудливым формам. Матовая (черная) поверхность радиатора будут излучать тепло гораздо более эффективно, чем голый (неокрашенный) блестящий металл [1] .

Читать еще:  Регулировка радиатора отопления purmo

Кулер на тепловых трубках [ править | править код ]

При ограниченности пространства непосредственно у процессора и необходимости отводить от малой площади большой поток тепла, используют тепловые трубки. Эффективность теплопередачи тепловой трубки на единицу сечения выше, чем у теплопередачи через сплошной металл.

Благодаря такому подходу становится возможным передавать тепло с малой площади кристалла процессора на большой радиатор, находящийся на некотором расстоянии. Особенно большую поверхность имеют радиаторы специально созданные для работы без вентилятора, что позволяет значительно снизить шум компьютера.

Назначение проводов компьютерного вентилятора [ править | править код ]

Вентиляторы бывают 2-, 3- и 4-контактными.

Цветовая маркировка проводов (тип 1):

  1. черный — земля (минус);  — +12 вольт;
  2. желтый — тахометр, сигнализирует о реальной скорости вращения;  — управление скоростью с помощью сигнала цифровой ШИМ (PWM) (0/12 вольт);

Цветовая маркировка проводов (тип 2):

  1. черный — земля (минус);
  2. желтый — +12 вольт;
  3. зелёный — тахометр, сигнализирует о реальной скорости вращения;  — управление скоростью с помощью ШИМ-сигнала (0/12 вольт);

Управление скоростью: если имеется синий провод, то управление должно производиться через него. Если нет, то напряжением питания.

Как увеличить скорость кулера на ноутбуке

uvlcht-skrst-kullr-noutbk(5)

Как увеличить скорость кулера на ноутбуке, если со временем он начинает работать немного медленнее, более шумно и порой даже перегревается. Перегрев — один из самых неудобных и вредных происшествий для компьютера, потому что это дополнительный износ оборудования и повышения шансов поломки.

Для устранения данной ситуации можно заменить термопасту и усилить охлаждение. Если замена термопасты — дело не очень сложное, то чтобы усилить систему охлаждения (СО) нужно или докупать охлаждающую подставку, или увеличивать скорость кулера. Охлаждающая подставка довольно шумная, стоит лишних денег, занимает место, а вот ускорить штатную СО можно абсолютно бесплатно.

Есть два варианта, как ускорить скорость кулера на ноутбуке:

  1. Используя программное обеспечение
  2. Используя BIOSUEFI

Перед разгоном

Для начала определимся, на что будет влиять скорость работы кулера:

  • Чем выше, тем больше шума издает ноутбук при работе, быстрее разряжается (незначительно), но в тоже время температура ЦП и системы в целом ниже, а значит, меньше зависаний и подтормаживаний из-за троттлинга (снижение частоты процессора для понижения температурной нагрузки). Используется схема электропитания Высокая производительность.
  • Чем ниже, тем тише работает ноутбук, тем медленнее разряжается аккумулятор, но при высоких нагрузках появляется вероятность перегрева устройства. Используется схема электропитания Экономия энергии.

Разгонять СО рекомендуется только в случае, если Вы прочистили кулеры и фильтры от пыли и мусора, а также заменили термопасту на всех ключевых точках: Процессор, видеокарта, северный и южный мосты.

В большинстве случаев прочистка системы охлаждения и замена термоинтерфейса решает проблемы перегрева и троттлинга. Но если же данные манипуляции трудновыполнимы по причине сложности разбора или гарантии ноутбука (что запрещает разбирать устройство), то для получения желаемого охлаждения лучше ускорить кулер.

Разгон кулера через ПО

Одна из наиболее популярных программ для контроля и отслеживания температуры системы — Speedfan — ответит на вопрос, как увеличить скорость кулера на ноутбуке. Скачать программу можно на сайте или по прямой ссылке загрузки.

Стоить обратить внимание, что не все ноутбуки поддерживаются данной программой. Вероятно, что очень старые устройства, или, наоборот, нового поколения, могут не показывать информацию по температуре и по скорости кулеров. Ознакомиться со списком поддерживаемых шин или мостов (BUS) можно на сайте утилиты.

Установите и откройте приложение SpeedFan. На главном окне будет отображаться главная информация по температуре и частоте вращения кулеров. Нажмите на Configure , после чего откроется окно настройки. Выберите необходимый компонент отслеживания – на примере это ЦП (CPU) и выставите желаемую температуру, система охлаждения будет работать в приоритете на данном параметре.

Следующий параметр во вкладке Speeds определяет скорость работы кулеров.

  1. Minimum value – минимальное значение (%)
  2. Maximum value – максимально значение (%)
  3. Automatically variated – автоматический выбор на основе температуры

После использования утилиты проверьте температурные показатели, если они не изменились в течении нескольких минутчасов, попробуйте изменить их через BIOS.

Как увеличить скорость вращения кулера на ноутбуке через BIOS

BIOS позволяет настраивать различные показатели устройства — от параметров загрузки до пароля на вход и регулирования частоты процессора или памяти. Не все лэптопы обладают возможностью разгона СО, поэтому нужно проверить эту опцию на вашем ноутбуке.

Для входа в BIOSUEFI Вашего компьютера при перезагрузке нажмите соответствующую клавишу:

ПроизводительКлавишаПроизводительКлавиша
AcerDEL, F2LenovoF1, F2
AsusF9, DEL, F2LenovoDEL
DellF2SamsungF2, F10
FujitsuF2SonyF1, F2, F3
HPESC, F10, F1ToshibaF1, F2, F12

Если у Вас классический BIOS, откройте вкладку Power и выберите Hardware Monitor

Затем, если у Вас есть возможность контролировать минимальную скорость кулера или задавать таргетное значение температуры установите необходимые настройки.

  • Для температуры — чем меньше, тем лучше – 40-55 С°
  • Для скорости — лучше протестировать на Вашем устройстве – выбрать от 100% до 35% с шагом в 5-10% для определения приемлемого уровня шума и температуры.

Для обладателей ноутбуков с UEFI интерфейс немного отличается, но функционал намного богаче.

Желаемые настройки будут находиться во вкладках Monitor, Hardware или Advanced . Настройки могут меняться в зависимости от производителя и версии UEFI.

Терморегулирование 3х- и 2х-контактных вентиляторов с системной платы ПК

Существует большое количество различных радиолюбительских схем управления вентиляторами. Не вдаваясь в подробности анализа удачности того или иного технического решения, перечислю распространённые проблемы и недостатки большинства существующих схем управления:

  1. Невозможность/некорректность работы таходатчика по причине находящегося в цепи массы регулирующего элемента или импульсного питания вентилятора;
  2. Снижение эффективности системы охлаждения на больших тепловых нагрузках из-за узкого диапазона частот вращения или невозможности регулятора выдавать полное (паспортное) напряжение на вентилятор;
  3. Дополнительный акустический шум и вибрация вентилятора по причине его питания ШИ-модулированным импульсным током;
  4. Нагрев элементов регулятора, работающих в линейном режиме;
  5. Ненадёжный пуск вентилятора на малых оборотах из-за большого сопротивления в цепи питания;
  6. Сильная зависимость оборотов от количества вентиляторов, подключенных к выходу одного регулятора.

Во всех современных системных платах есть технологии понижения шума процессорного кулера. Названия разные — SmartFAN, QuietFAN и т.п. Управление этой технологией производится через BIOS. На рис. 1 на примере BIOS системной платы MSI MS-7519 (AMIBIOS) показана страница настройки параметров технологии термоконтроля.

Рис.1 Страница BIOS PC Health
Рис.1 Страница BIOS PC Health

Настраиваемыми являются следующие параметры.

  • CPU Smart Fan Target — установка целевой температуры, при превышении которой, плата начнёт повышать заполнение управляющего сигнала #CONTROL 4-пинового разъёма.
  • CPU Min FAN SPEED (%) — минимальный коэффициент заполнения сигнала #CONTROL для поддержания минимальных оборотов кулера на температурах ниже целевой. На моей плате доступны 8 значений с шагом 12,5% от 0 до 87,5%.

Различаются три зоны регулирования оборотов вентилятора. Первая зона – ниже CPU Smart Fan Target. Скорость вращения в этой зоне определяется настройкой CPU Min FAN SPEED (%). Нужно ли вращаться вентилятору, когда температура процессора ниже 40°C – отдельный вопрос, но в данном случае мне это очень пригодилось. Об этом будет сказано отдельно.

По достижении температуры CPU Smart Fan Target, начинается зона активного ШИ-регулирования. Системная плата увеличивает коэффициент заполнения сигнала #CONTROL пропорционально отклонению температуры ЦПУ от Smart Fan Target. Этот коэффициент пропорциональности измеряется в процентах коэффициента заполнения на градус Цельсия, %/°C, показывает, насколько остро система будет реагировать на превышение заданной температуры. В моём случае коэффициент не регулируется через BIOS, и скрыт от пользователя. Есть системные платы, позволяющие его корректировать. К этому надо быть готовым – не все сходу могут разобраться с настройками терморегулирования, учитывая их разнообразные названия (но единую сущность).

По достижении 100% заполнения сигнала #CONTROL, начинается зона, в которой вентилятор работает на полную производительность. Обычно, соответствует высоким нагрузкам на ЦПУ. Слишком частый выход на полные обороты может указывать на то, что система охлаждения плохо справляется с теплоотведением.

Рабочие точки системы терморегулирования вентилятора ЦПУ разобраны в [1], и показаны на рис. 2. с моими пояснениями.

Рис. 2 Рабочие точки системы терморегулирования

Цоколёвка разъёма вентилятора приведена на рис.3. Если вентилятор не поддерживает ШИМ-управление частотой вращения, тогда контакт 4 – отсутствует. Если и таходатчика нет, тогда отсутствуют контакты 3 и 4. Положение выступов-ключей для 3х и 4х контактных вентиляторов — неизменное. Таким образом, у вентиляторов сохраняется совместимость по разъёмам.

Рис. 3 Цоколёвка разъёма вентилятора

Рис. 4 Сигнал #CONTROL. Горизонт – 10 мкс/дел, вертикаль – 1 В/дел
Рис. 4 Сигнал #CONTROL. Горизонт – 10 мкс/дел, вертикаль – 1 В/дел, частота 23,4 кГц, заполнение — 37% (в BIOS выставлено 37,5%).

Параметры управляющего скоростью сигнала #CONTROL сигнала можно найти в [1]. Амплитуда – 5 В, выход типа «открытый коллектор» с подтягиванием к +5 В. Частота около 22 кГц. С разъёма CPUFAN на системной плате при работающем вентиляторе мной снята осциллограмма сигнала, показанная на рис. 4. На рис. 4, параметр CPU Min FAN SPEED (%) выставлен в BIOSе на 12,5%. Заполнение импульса составляет 12,5%, что соответствует выставленному в BIOS значению. При установке других значений, получается соответственно.

При составлении принципиальной схемы, ход мыслей был таким:

  1. Подключиться к разъёму CPUFAN на системной плате.
  2. Сигнал #SENSE транзитом коммутировать с соответствующим контактом 3-pin вентилятора для сохранения возможности мониторинга оборотов.
  3. Регулирование 3-pin вентилятора осуществлять постоянным напряжением, относительно минуса, т.е., регулирующий элемент поместить в плюсовой цепи.
  4. Используя сигнал #CONTROL, управлять P-канальным (или PNP) ключом, коммутирующим напряжение питания +12 В.
  5. Учитывая необходимость получения постоянного напряжения питания, применить диодно-индуктивно-ёмкостной интегратор.
  6. Рассмотреть возможность питания схемы от 4-пин разъема CPUFAN и отдельного питания от шины +12В блока питания для разгрузки разъема CPUFAN.

Получилась схема, очень похожая на обычный понижающий импульсный стабилизатор, только без явной обратной связи и контроллера, роль которого в данном случае, выполняет системная плата.

Наблюдается прямо пропорциональная (при непрерывном токе дросселя) зависимость выходного напряжения схемы от заполнения сигнала управления: Uвых

12*D (Вольт), где D – коэффициент заполнения, 0..1. Потери на активных сопротивлениях для упрощения, не берутся в расчёт. Это делает регулирование предсказуемым даже без мониторинга оборотов.

На рис. 5 показана универсальная схема управления вентиляторами, с питанием от разъема процессорного вентилятора CPUFAN. Условно ведущий вентилятор – 4 контактный, с поддержкой сигналов #CONTROL и #SENSE. Условно ведомые вентиляторы все остальные – 2х, 3х-контактные, будут регулироваться тем же напряжением и по тому же алгоритму, что и ведущий. Линия Sense будет работать корректно только с одним вентилятором (либо с разъемом 4-пин, либо с 3-пин). Всего можно подключить до 4х вентиляторов (по схеме «4+2+2+2» либо «3+2+2+2»).

Рис. 5 Принципиальная схема управления вентиляторами с питанием от разъема CPUFAN

Общая цепь питания вентилятора и таходатчика, остаётся неразрывной, регулирование осуществляется по плюсовому проводу. VT3, включён по схеме общий исток в плюсовую цепь питания, работает в ключевом режиме. Сопротивление потерь схемы складывается из Rdson и сопротивления Rdc дросселя, не превышает 1 Ом. Полное (штатное) напряжение на вентиляторе не менее 11 В, проблем с неполным использованием питающего напряжения не возникает. Вентилятор питается сглаженным напряжением с низким уровнем пульсаций, дополнительных шумов двигателя вентилятора, связанных с ШИ-регулированием нет, таходатчик и управляющие ИМС в составе двигателя работают полностью штатно. Низкое выходное сопротивление схемы даёт возможность запускаться вентиляторам при выходном напряжении менее 4 В, в зависимости от типа. По этой же причине, зависимость оборотов от числа подключенных параллельно вентиляторов — небольшая и обусловлена выходным сопротивлением схемы (<1 Ом). Устраняется выбором VT3 и L1 с меньшим сопротивлением по постоянному току. При настройке BIOS системной платы, рекомендуется выставлять минимальные обороты с учётом работоспособности применяемых вентиляторов на низких напряжениях питания.

Для схемы рис. 5, 6, R1 – токоограничительный резистор. Его величина должна быть достаточно большой, чтобы не искажать сигнал управления #CONTROL. Транзистор VT1 инвертирует сигнал управления, заряжая затвор VT3 до -11..-12В для отпирания. VT2 с резистором смещения R2 ускоряют разрядку затвора VT3 при его закрывании. Эти меры нужны для сохранения на низком уровне потерь на переключение. Диод Шоттки — фиксирующий (нулевой), поддерживает ток дросселя в паузах между импульсами. Дроссель L1 интегрирует импульсы напряжения, выделяя их среднее значение, которое прикладывается к вентилятору.

При выставленном в BIOS параметре CPU Min FAN SPEED 37,5%, на вентиляторе наблюдается напряжение 4,2 В, он устойчиво запускается и вращается.

Защита от короткого замыкания и перегрузки выполнена на SMD PTC-предохранителе многократного действия. Конденсатор C1 необходим для исключения выбросов напряжения на входе, вызванных импульсным потреблением тока. Конденсатор С2 подавляет пульсации как с частотой ШИМ, так и с частотой коммутации самого вентилятора.

Все детали, кроме дросселя L1 и штыревых разъёмов — SMD. Резисторы – типоразмера 0805. VT3 — P-канальный МОП-транзистор (p-MOS) IRF6216 на 150 В и Rdson 0,25 Ом в корпусе SO-8. Можно и лучше с точки зрения полного заряда затвора применить ключ на 25-30 В. Маломощные биполярные транзисторы VT1, VT2 — типа MMBT3904 (маркировка 1AM, K1N). Их можно заменить на PMBT2222 (маркировка 1B), PMBT2222A (1P). Вместо VT1 можно установить малосигнальный n-МОП транзистор 2N7002 (702) без корректировки печатной платы. В этом случае R1 надо взять 1 кОм.

Диод VD2 — Шоттки SS12 (1 А, 20 В). Конденсаторы C1 и C2 — малогабаритные, танталл, 47-100 мкФ 16-20 В.

Дроссель L1- гантелька, на 500 мкГн, максимальный ток должен соответствовать суммарному потреблению всех вентиляторов (1..1,5А). RDC дросселя — не более 0,5 Ом. Индуктивность, выбирается с учётом минимального тока нагрузки. Если предполагается работа с маломощными вентиляторами и малыми токами, индуктивность надо увеличить для сохранения неразрывного тока дросселя. Для перепроверки режима работы дросселя, можно воспользоваться программой Drossel из пакета All_In_One автора @Starichok (Денисенко В.)

Штыревые разъёмы – однорядные PLS. Такими к системным платам подключаются передние панели, кнопки, USB-порты. Их можно заменить соответствующими 3х- и 4х- пиновыми разъёмами с ключами предназначенными для вентиляторов.

Предохранитель F1 исполнения под поверхностный монтаж SMD1812P110TF/33, полупроводниковый от Polytronics. Вместо указанного подойдут и другие типы, например MF-MSM..(Bourns-Multifuse), mini-SMD.. (Tyco-Polyswitch) на ток срабатывания 1,5..2 А.

На рис. 6 показана принципиальная схема управления вентиляторами с питанием от шины +12В Molex. Выходной разъем 4-пин питается штатно, от 12В, поступающих от 4-контактного разъема процессорного вентилятора. Сигнал ШИМ снимается оттуда же. Схема управления имеет некоторые отличия. Для улучшения совместимости, вместо биполярного VT1, использован маломощный N-MOSFET 2N7002, затвор которого притянут к линии +5В. Активный уровень входа (высокий) — присутствует на затворе по умолчанию, без подключения к разъему CPUFAN. Схема ШИМ питается от относительно мощного 4х-контактного свободного разъема molex системного источника питания ATX. Это дает возможность увеличить число управляемых вентиляторов и разгрузить разъем CPUFAN на системной плате ПК. В остальном, схемы на рис. 5 и рис. 6 аналогичны.

Рис. 6 Принципиальная схема управления вентиляторами с питанием от Molex

Плата управления с питанием от CPUFAN собрана на малогабаритной плате 60*15 мм, с двумя отверстиями для монтажа ᴓ3 мм. Монтаж платы в ПК — на стандартном уголке от плат расширения (рис. 7). Подключение — коротким (15-20 см) 4-жильным кабелем к разъёму CPUFAN на системной плате. К смонтированной плате подключается 3 или 4-пиновый кулер процессора с мониторингом оборотов. К другим разъёмам можно подключить вентиляторы всаса и вытяжной (2-пиновые) без мониторинга оборотов.

Рис. 7 Плата управления вентиляторами, с питанием от CPUFAN. Вид со стороны разъёмов.

Плата управления с питанием от Molex, собрана на плате 50*25 мм, с двумя отверстиями для монтажа ᴓ3 мм. Монтаж платы в ПК — на стандартном уголке от плат расширения (рис. 8). Короткий 4-жильный кабель для подключения к системной плате — впаян. К разъему molex подключается свободный разъем блока питания ПК. К смонтированной плате подключается 3 или 4-пиновый кулер процессора с мониторингом оборотов и до 4х вентиляторов без мониторинга оборотов (рис. 9).

Плата с питанием от молекса на уголке

Рис. 8 Плата управления вентиляторами, с питанием от molex. Вид со стороны разъёмов.

Плата управления вентиляторами с питанием от molex.Смонтирована в ПК

Всего собрано 5 экземпляров устройств по универсальной схеме с питанием от molex, с питанием от CPUFAN, которые работают в системных блоках, совместно с различными системными платами (ASRock G31M-S, MSI P43-NEO F и т.п.).

В некоторых случаях глубина ШИМ-регулирования невелика, что связано с особенностями BIOS системной платы(G31M-S). В большинстве случаев, обороты вентиляторов регулируются адекватно вычислительной нагрузке, с ШИМ-регулированием шум от системы охлаждения небольшой, особенно, когда не запущены ресурсоёмкие приложения.

Для удержания на комфортном уровне температуры жёстких дисков, необходимо обеспечить минимальную продувку системного блока настройкjq минимальной скорости вращения вентиляторов (параметр BIOS CPU Min FAN SPEED).

Выводы

Удалось получить хорошую совместимость с различными корпусными вентиляторами. Появилась возможность поставить в соответствие общей вычислительной нагрузке практически все шумные системные вентиляторы. То есть, сделать ПК значительно тише, когда от него не требуется высокой производительности, при максимальном использовании существующего контура (контуров) регулирования на системной плате.

голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector